Update README.md
Browse files
README.md
CHANGED
|
@@ -65,17 +65,15 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 65 |
from peft import PeftModel
|
| 66 |
|
| 67 |
base_model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
| 68 |
-
adapter_id = "
|
| 69 |
|
| 70 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 71 |
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
| 72 |
model = PeftModel.from_pretrained(model, adapter_id)
|
| 73 |
|
| 74 |
def make_prompt(code: str) -> str:
|
| 75 |
-
return
|
| 76 |
-
|
| 77 |
-
f"{code}\n\n\"\"\""
|
| 78 |
-
)
|
| 79 |
|
| 80 |
code = "def add(a, b):\n return a + b"
|
| 81 |
inputs = tokenizer(make_prompt(code), return_tensors="pt").to(model.device)
|
|
|
|
| 65 |
from peft import PeftModel
|
| 66 |
|
| 67 |
base_model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
| 68 |
+
adapter_id = "Abdul1102/llama32-1b-python-docstrings-qlora"
|
| 69 |
|
| 70 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 71 |
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
| 72 |
model = PeftModel.from_pretrained(model, adapter_id)
|
| 73 |
|
| 74 |
def make_prompt(code: str) -> str:
|
| 75 |
+
return
|
| 76 |
+
f'Write a one-line Python docstring for this function:\n\n{code}\n\n"""'
|
|
|
|
|
|
|
| 77 |
|
| 78 |
code = "def add(a, b):\n return a + b"
|
| 79 |
inputs = tokenizer(make_prompt(code), return_tensors="pt").to(model.device)
|