File size: 69,327 Bytes
2e01525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
"""
David Training Pipeline
========================
Training pipeline for David multi-scale crystal classifier.

Should be placed at: geovocab2/train/model/core/david_trainer.py
Or run from: scripts/train_david.py

Features:
- Pure fp32 training (no mixed precision for geometric stability)
- Adaptive training controller (freeze/unfreeze scales)
- Gradient analysis and scaling
- SafeTensors checkpoint support
- Enhanced loss component tracking
- Proper weight organization: weights/model_name/timestamp/
- Accuracy in filenames and comprehensive tracking
- Master models index (MODELS_INDEX.json)
"""

import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from datasets import load_dataset
from huggingface_hub import HfApi, create_repo, upload_folder, upload_file
import numpy as np
import os
import json
import time
import tempfile
from datetime import datetime
from tqdm.auto import tqdm
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from dataclasses import dataclass, field, asdict

# Import David components
from geovocab2.train.config.david_config import (
    DavidArchitectureConfig,
    DavidPresets,
    SharingMode,
    FusionMode
)

from geovocab2.train.model.core.david import (
    David,
    MultiScaleCrystalLoss,
)

# Import SimplexFactory
from geovocab2.shapes.factory import SimplexFactory


# ============================================================================
# TRAINING CONFIGURATION
# ============================================================================

@dataclass
class DavidTrainingConfig:
    """
    Complete training configuration for David.
    Separate from model architecture config.
    """
    
    # Metadata
    name: str = "david_training"
    run_id: str = ""  # Auto-generated timestamp
    
    # Dataset
    dataset_name: str = "AbstractPhil/imagenet-clip-features-orderly"
    model_variant: Union[str, List[str]] = "clip_vit_b16"  # Single or list for multi-encoder
    num_classes: int = 1000
    
    # Model architecture (references to david_config)
    preset: Optional[str] = "balanced"  # Or None to use custom config
    custom_config_path: Optional[str] = None  # Path to custom david_config.json
    
    # Architecture overrides (applied to preset or custom config)
    num_classes_override: Optional[int] = None
    use_belly_override: Optional[bool] = None
    belly_expand_override: Optional[float] = None
    progressive_training_override: Optional[bool] = True  # Override progressive training
    scale_warmup_epochs_override: Optional[Dict[int, int]] = None  # Custom warmup schedule
    
    # Training hyperparameters
    num_epochs: int = 50
    batch_size: int = 512
    learning_rate: float = 5e-3
    weight_decay: float = 1e-5
    warmup_epochs: int = 3
    
    # Loss weights
    use_rose_loss: bool = True
    rose_initial_weight: float = 0.01
    rose_max_weight: float = 0.1
    rose_weight_schedule: str = "adaptive"
    use_cayley_loss: bool = False
    cayley_weight: float = 0.001
    scale_loss_balance: Optional[Dict[int, float]] = None
    
    # Optimization
    use_mixed_precision: bool = False  # Keep False for stability
    gradient_clip: float = 5.0
    scheduler_type: str = "cosine_restarts"
    min_lr: float = 1e-6
    
    # Adaptive training (safer defaults)
    freeze_strategy: str = "never"  # "performance" or "never"
    freeze_threshold: float = 90.0  # Only freeze when scale hits 90% accuracy
    unfreeze_on_plateau: bool = True
    patience: int = 10
    
    # Gradient monitoring
    track_gradients: bool = True
    gradient_scale_threshold: float = 1e-5
    gradient_scale_multiplier: float = 10.0
    
    # Logging
    log_interval: int = 50
    val_interval: int = 1
    save_interval: int = 5
    log_fusion_weights: bool = True
    log_loss_components: bool = True
    
    # Checkpointing
    save_format: str = "both"  # "pytorch", "safetensors", or "both"
    
    # HuggingFace Hub (optional)
    hf_repo: Optional[str] = "" #"AbstractPhil/gated-david"  # Your HF repo
    upload_to_hub: bool = False
    
    # Local paths
    base_dir: str = "./david_training"
    
    # Hardware
    num_workers: int = 10
    pin_memory: bool = True
    prefetch_factor: int = 4
    persistent_workers: bool = True
    
    def __post_init__(self):
        """Generate run_id if not provided."""
        if not self.run_id:
            self.run_id = datetime.now().strftime('%Y%m%d_%H%M%S')
    
    def to_dict(self) -> dict:
        """Convert to dictionary."""
        return asdict(self)
    
    @classmethod
    def from_dict(cls, data: dict) -> 'DavidTrainingConfig':
        """Create from dictionary."""
        return cls(**data)
    
    def to_json(self, path: str):
        """Save to JSON."""
        data = self.to_dict()
        # Convert any nested dicts with int keys to str keys
        if data.get('scale_loss_balance'):
            data['scale_loss_balance'] = {
                str(k): v for k, v in data['scale_loss_balance'].items()
            }
        if data.get('scale_warmup_epochs_override'):
            data['scale_warmup_epochs_override'] = {
                str(k): v for k, v in data['scale_warmup_epochs_override'].items()
            }
        with open(path, 'w') as f:
            json.dump(data, f, indent=2)
    
    @classmethod
    def from_json(cls, path: str) -> 'DavidTrainingConfig':
        """Load from JSON."""
        with open(path, 'r') as f:
            data = json.load(f)
        # Convert str keys back to int for scale_loss_balance
        if 'scale_loss_balance' in data and data['scale_loss_balance']:
            data['scale_loss_balance'] = {
                int(k): v for k, v in data['scale_loss_balance'].items()
            }
        # Convert str keys back to int for scale_warmup_epochs_override
        if 'scale_warmup_epochs_override' in data and data['scale_warmup_epochs_override']:
            data['scale_warmup_epochs_override'] = {
                int(k): v for k, v in data['scale_warmup_epochs_override'].items()
            }
        return cls(**data)


# ============================================================================
# ADAPTIVE TRAINING CONTROLLER
# ============================================================================

class AdaptiveTrainingController:
    """Manages adaptive training strategies for multi-scale model."""
    
    def __init__(self, model: David, config: DavidTrainingConfig):
        self.model = model
        self.config = config
        
        scales = model.scales
        self.scale_history = {scale: [] for scale in scales}
        self.best_scale_acc = {scale: 0.0 for scale in scales}
        self.scales_frozen = {scale: False for scale in scales}
        
        self.overall_history = []
        self.plateau_counter = 0
        self.best_overall = 0.0
    
    def update_metrics(self, scale_accuracies: Dict[int, float], overall_accuracy: float):
        """Update metrics and best scores."""
        for scale, acc in scale_accuracies.items():
            self.scale_history[scale].append(acc)
            if acc > self.best_scale_acc[scale]:
                self.best_scale_acc[scale] = acc
        
        self.overall_history.append(overall_accuracy)
        
        if overall_accuracy > self.best_overall:
            self.best_overall = overall_accuracy
            self.plateau_counter = 0
        else:
            self.plateau_counter += 1
    
    def should_freeze_scale(self, scale: int, current_acc: float) -> bool:
        """Determine if a scale should be frozen."""
        if self.config.freeze_strategy == "never":
            return False
        
        if self.scales_frozen[scale]:
            return False
        
        if self.config.freeze_strategy == "performance":
            return current_acc >= self.config.freeze_threshold
        
        return False
    
    def should_unfreeze_scales(self) -> bool:
        """Check if scales should be unfrozen due to plateau."""
        if not self.config.unfreeze_on_plateau:
            return False
        return self.plateau_counter >= 5
    
    def apply_adaptive_strategies(self, scale_accuracies: Dict[int, float], epoch: int):
        """Apply freeze/unfreeze based on performance."""
        active_scales = self.model.get_active_scales()
        
        # Don't freeze scales if it would leave no trainable parameters
        for scale, acc in scale_accuracies.items():
            if self.should_freeze_scale(scale, acc):
                # Count how many active scales would remain unfrozen
                active_unfrozen = [s for s in active_scales if not self.scales_frozen.get(s, False)]
                
                if len(active_unfrozen) <= 1:
                    print(f"[⚠️] Skipping freeze of scale {scale} (would leave no active trainable scales)")
                    continue
                
                self.model.freeze_scale(scale)
                self.scales_frozen[scale] = True
                print(f"[❄️] Froze scale {scale} (acc={acc:.2f}%)")
        
        if self.should_unfreeze_scales() and any(self.scales_frozen.values()):
            for scale in self.model.scales:
                if self.scales_frozen[scale]:
                    self.model.unfreeze_scale(scale)
                    self.scales_frozen[scale] = False
            self.plateau_counter = 0
            print(f"[πŸ”₯] Unfroze all scales due to plateau")


# ============================================================================
# OPTIMIZER & SCHEDULER CREATION
# ============================================================================

def create_optimizer(david: David, config: DavidTrainingConfig) -> torch.optim.Optimizer:
    """Create optimizer with parameter groups."""
    
    param_groups = []
    
    # Shared parameters (if exists)
    if hasattr(david, 'shared_extractor'):
        param_groups.append({
            'params': david.shared_extractor.parameters(),
            'lr': config.learning_rate,
            'name': 'shared'
        })
    elif hasattr(david, 'shared_base'):
        param_groups.append({
            'params': david.shared_base.parameters(),
            'lr': config.learning_rate,
            'name': 'shared'
        })
    
    # Scale-specific parameters
    for scale in david.scales:
        scale_params = []
        if david.sharing_mode == SharingMode.HIERARCHICAL:
            head = getattr(david, f'head_{scale}', None)
            if head:
                scale_params.extend(head.parameters())
            refine = getattr(david, f'refine_{scale}', None)
            if refine:
                scale_params.extend(refine.parameters())
        else:
            scale_params.extend(david.heads[str(scale)].parameters())
        
        if scale_params:
            param_groups.append({
                'params': scale_params,
                'lr': config.learning_rate,
                'name': f'scale_{scale}'
            })
    
    # Fusion parameters
    if hasattr(david, 'fusion'):
        param_groups.append({
            'params': david.fusion.parameters(),
            'lr': config.learning_rate * 0.5,
            'name': 'fusion'
        })
    elif hasattr(david, 'fusion_weights'):
        param_groups.append({
            'params': [david.fusion_weights],
            'lr': config.learning_rate * 0.5,
            'name': 'fusion'
        })
    
    return torch.optim.AdamW(param_groups, weight_decay=config.weight_decay)


def create_scheduler(optimizer: torch.optim.Optimizer, 
                     config: DavidTrainingConfig) -> torch.optim.lr_scheduler._LRScheduler:
    """Create learning rate scheduler."""
    
    if config.scheduler_type == "cosine_restarts":
        return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
            optimizer, T_0=10, T_mult=2, eta_min=config.min_lr
        )
    elif config.scheduler_type == "cosine":
        return torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, T_max=config.num_epochs, eta_min=config.min_lr
        )
    else:
        return None


# ============================================================================
# GRADIENT ANALYSIS
# ============================================================================

def analyze_gradients(model: David, config: DavidTrainingConfig) -> Dict[str, float]:
    """Analyze gradient magnitudes for debugging."""
    grad_stats = {
        'mean': 0.0,
        'max': 0.0,
        'min': float('inf'),
        'num_zero': 0,
        'num_small': 0,
        'total': 0
    }
    
    for name, param in model.named_parameters():
        if param.grad is not None:
            grad_norm = param.grad.norm().item()
            grad_stats['mean'] += grad_norm
            grad_stats['max'] = max(grad_stats['max'], grad_norm)
            grad_stats['min'] = min(grad_stats['min'], grad_norm)
            grad_stats['total'] += 1
            
            if grad_norm < 1e-10:
                grad_stats['num_zero'] += 1
            elif grad_norm < config.gradient_scale_threshold:
                grad_stats['num_small'] += 1
    
    if grad_stats['total'] > 0:
        grad_stats['mean'] /= grad_stats['total']
    
    return grad_stats


def scale_small_gradients(model: David, config: DavidTrainingConfig):
    """Scale up very small gradients to prevent vanishing."""
    if not config.track_gradients:
        return
    
    for param in model.parameters():
        if param.grad is not None:
            grad_norm = param.grad.norm()
            if grad_norm < config.gradient_scale_threshold and grad_norm > 0:
                param.grad.mul_(config.gradient_scale_multiplier)


# ============================================================================
# HUGGINGFACE HUB UTILITIES
# ============================================================================

def generate_model_readme(
    config: DavidTrainingConfig,
    david_config: DavidArchitectureConfig,
    best_metrics: Dict,
    run_id: str
) -> str:
    """Generate README.md for model card."""
    
    readme = f"""---
language: en
license: mit
tags:
- image-classification
- imagenet
- multi-scale
- feature-geometry
- david
datasets:
- imagenet-1k
metrics:
- accuracy
model-index:
- name: David-{david_config.sharing_mode}-{david_config.fusion_mode}
  results:
  - task:
      type: image-classification
    dataset:
      name: ImageNet-1K
      type: imagenet-1k
    metrics:
    - type: accuracy
      value: {best_metrics.get('best_val_acc', 0.0):.2f}
---

# David: Multi-Scale Feature Classifier

**David** is a multi-scale deep learning classifier that uses feature geometry (pentachora/4-simplexes) 
as class prototypes with role-weighted similarity computation (Rose Loss).

This version is using multiple variations of clip-vit inputs simultaneously into shared space.
The experiment will determine if entirely deviant variations such as clip-vit-b-patch32 and patch16 can
exist simultaneously in the same shared space with the correct checks and spacings applied.

## Model Details

### Architecture
- **Preset**: {config.preset}
- **Sharing Mode**: {david_config.sharing_mode}
- **Fusion Mode**: {david_config.fusion_mode}
- **Scales**: {david_config.scales}
- **Feature Dim**: {david_config.feature_dim}
- **Parameters**: {best_metrics.get('parameters', 0):,}

### Training Configuration
- **Dataset**: {config.dataset_name}
- **Model Variant**: {config.model_variant}
- **Epochs**: {config.num_epochs}
- **Batch Size**: {config.batch_size}
- **Learning Rate**: {config.learning_rate}
- **Rose Loss Weight**: {config.rose_initial_weight} β†’ {config.rose_max_weight}
- **Cayley Loss**: {config.use_cayley_loss}

## Performance

### Best Results
- **Validation Accuracy**: {best_metrics.get('best_val_acc', 0.0):.2f}%
- **Best Epoch**: {best_metrics.get('best_epoch', 0)}
- **Final Train Accuracy**: {best_metrics.get('final_train_acc', 0.0):.2f}%

### Per-Scale Performance
"""
    
    if 'scale_accuracies' in best_metrics:
        for scale, acc in best_metrics['scale_accuracies'].items():
            readme += f"- **Scale {scale}**: {acc:.2f}%\n"
    
    readme += f"""

## Usage

### Quick Model Lookup

**Check `MODELS_INDEX.json` in the repo root** - it lists all trained models sorted by accuracy with links to weights and configs.

### Repository Structure

```
{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}/
β”œβ”€β”€ MODELS_INDEX.json                # πŸ“Š Master index of all models (sorted by accuracy)
β”œβ”€β”€ README.md                         # This file
β”œβ”€β”€ best_model.json                   # Latest best model info
β”œβ”€β”€ weights/
β”‚   └── {david_config.name}/
β”‚       └── {run_id}/
β”‚           β”œβ”€β”€ MODEL_SUMMARY.txt     # 🎯 Human-readable performance summary
β”‚           β”œβ”€β”€ training_history.json # πŸ“ˆ Epoch-by-epoch training curve
β”‚           β”œβ”€β”€ best_model_acc{best_metrics.get('best_val_acc', 0.0):.2f}.safetensors  # ⭐ Accuracy in filename!
β”‚           β”œβ”€β”€ best_model_acc{best_metrics.get('best_val_acc', 0.0):.2f}_metadata.json
β”‚           β”œβ”€β”€ final_model.safetensors
β”‚           β”œβ”€β”€ checkpoint_epoch_X_accYY.YY.safetensors
β”‚           β”œβ”€β”€ david_config.json
β”‚           └── train_config.json
└── runs/
    └── {david_config.name}/
        └── {run_id}/
            └── events.out.tfevents.* # TensorBoard logs
```

### Loading the Model

```python
from geovocab2.train.model.core.david import David, DavidArchitectureConfig
from huggingface_hub import hf_hub_download

# Browse available models in MODELS_INDEX.json first!

# Specify model variant and run
model_name = "{david_config.name}"
run_id = "{run_id}"
accuracy = "{best_metrics.get('best_val_acc', 0.0):.2f}"  # From MODELS_INDEX.json

# Download config
config_path = hf_hub_download(
    repo_id="{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}", 
    filename=f"weights/{{model_name}}/{{run_id}}/david_config.json"
)
config = DavidArchitectureConfig.from_json(config_path)

# Download weights (accuracy in filename!)
weights_path = hf_hub_download(
    repo_id="{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}", 
    filename=f"weights/{{model_name}}/{{run_id}}/best_model_acc{{accuracy}}.safetensors"
)

# Download training history (optional - see full training curve)
history_path = hf_hub_download(
    repo_id="{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}", 
    filename=f"weights/{{model_name}}/{{run_id}}/training_history.json"
)

# Load model
from safetensors.torch import load_file
david = David.from_config(config)
david.load_state_dict(load_file(weights_path))
david.eval()
```

### Inference

```python
import torch
import torch.nn.functional as F

# Assuming you have CLIP features (512-dim for ViT-B/16)
features = get_clip_features(image)  # [1, 512]

# Load anchors
anchors_dict = torch.load("anchors.pth")

# Forward pass
with torch.no_grad():
    logits, _ = david(features, anchors_dict)
    predictions = logits.argmax(dim=-1)
```

## Architecture Overview

### Multi-Scale Processing
David processes inputs at multiple scales ({', '.join(map(str, david_config.scales))}), 
allowing it to capture both coarse and fine-grained features.

### Shared Representation Space
This variation shares multiple versions of clip-vit models in the same representation space.

### Feature Geometry
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
- **Anchor**: Primary class representative
- **Need**: Complementary direction
- **Relation**: Contextual alignment
- **Purpose**: Functional direction
- **Observer**: Meta-perspective

### Rose Loss
Similarity computation uses role-weighted cosine similarities:
```
score = w_anchor * sim(z, anchor) + w_need * sim(z, need) + ...
```

### Fusion Strategy
**{david_config.fusion_mode}**: Intelligently combines predictions from multiple scales.

## Training Details

### Loss Components
- **Cross-Entropy**: Standard classification loss
- **Rose Loss**: Pentachora role-weighted margin loss (weight: {config.rose_initial_weight}β†’{config.rose_max_weight})
- **Cayley Loss**: Geometric regularization ({'enabled' if config.use_cayley_loss else 'disabled'})

### Optimization
- **Optimizer**: AdamW
- **Weight Decay**: {config.weight_decay}
- **Scheduler**: {config.scheduler_type}
- **Gradient Clip**: {config.gradient_clip}
- **Mixed Precision**: {config.use_mixed_precision}

## Citation

```bibtex
@software{{david_classifier_2025,
  title = {{David: Multi-Scale Feature Classifier}},
  author = {{AbstractPhil}},
  year = {{2025}},
  url = {{https://huggingface.co/{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}}},
  note = {{Run ID: {run_id}}}
}}
```

## License

MIT License

## Acknowledgments

Built with feature lattice geometry and multi-scale deep learning.
Special thanks to Claude (Anthropic) for debugging assistance.

---

*Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*
"""
    
    return readme


def save_best_model_json(
    filepath: str,
    metrics: Dict,
    config: DavidTrainingConfig,
    david_config: DavidArchitectureConfig
):
    """Save best_model.json with comprehensive metrics."""
    
    model_name = f"David-{david_config.sharing_mode}-{david_config.fusion_mode}"
    
    best_model_info = {
        "model_name": model_name,
        "run_id": config.run_id,
        "timestamp": datetime.now().isoformat(),
        
        # Best metrics
        "best_val_acc": metrics.get('best_val_acc', 0.0),
        "best_epoch": metrics.get('best_epoch', 0),
        "final_train_acc": metrics.get('final_train_acc', 0.0),
        "final_train_loss": metrics.get('final_train_loss', 0.0),
        
        # Per-scale performance
        "scale_accuracies": metrics.get('scale_accuracies', {}),
        
        # Architecture
        "architecture": {
            "preset": config.preset,
            "sharing_mode": david_config.sharing_mode,
            "fusion_mode": david_config.fusion_mode,
            "scales": david_config.scales,
            "feature_dim": david_config.feature_dim,
            "num_classes": david_config.num_classes,
            "use_belly": david_config.use_belly,
            "belly_expand": david_config.belly_expand,
        },
        
        # Training config
        "training": {
            "dataset": config.dataset_name,
            "model_variant": config.model_variant,
            "num_epochs": config.num_epochs,
            "batch_size": config.batch_size,
            "learning_rate": config.learning_rate,
            "rose_weight": f"{config.rose_initial_weight}β†’{config.rose_max_weight}",
            "cayley_loss": config.use_cayley_loss,
            "optimizer": "AdamW",
            "scheduler": config.scheduler_type,
        },
        
        # Files (organized by model/run)
        "files": {
            "weights_safetensors": f"weights/{model_name}/{config.run_id}/best_model_acc{metrics.get('best_val_acc', 0.0):.2f}.safetensors",
            "weights_pytorch": f"weights/{model_name}/{config.run_id}/best_model.pth",
            "config": f"weights/{model_name}/{config.run_id}/david_config.json",
            "training_config": f"weights/{model_name}/{config.run_id}/train_config.json",
            "tensorboard": f"runs/{model_name}/{config.run_id}/"
        }
    }
    
    with open(filepath, 'w') as f:
        json.dump(best_model_info, f, indent=2)
    
    print(f"[πŸ“„] Saved best_model.json: {filepath}")


def create_model_summary(
    weights_dir: str,
    config: DavidTrainingConfig,
    david_config: DavidArchitectureConfig,
    best_metrics: Dict,
    model_name: str
):
    """Create prominent model summary with accuracy front and center."""
    
    summary_path = os.path.join(weights_dir, 'MODEL_SUMMARY.txt')
    
    best_acc = best_metrics.get('best_val_acc', 0.0)
    training_history = best_metrics.get('training_history', {})
    
    summary = f"""
╔══════════════════════════════════════════════════════════════╗
β•‘                      DAVID MODEL SUMMARY                      β•‘
╠══════════════════════════════════════════════════════════════╣
β•‘                                                               β•‘
β•‘  🎯 VALIDATION ACCURACY: {best_acc:.2f}%                          β•‘
β•‘                                                               β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

MODEL: {model_name}
RUN ID: {config.run_id}
BEST EPOCH: {best_metrics.get('best_epoch', 0) + 1}/{config.num_epochs}

═══════════════════════════════════════════════════════════════

πŸ“Š PERFORMANCE BREAKDOWN

Final Training Accuracy:  {best_metrics.get('final_train_acc', 0.0):.2f}%
Best Validation Accuracy: {best_acc:.2f}%

Per-Scale Accuracies:
"""
    
    scale_accs = best_metrics.get('scale_accuracies', {})
    for scale in sorted(scale_accs.keys()):
        acc = scale_accs[scale]
        summary += f"  β€’ Scale {scale:4d}: {acc:.2f}%\n"
    
    summary += f"""
═══════════════════════════════════════════════════════════════

πŸ—οΈ  ARCHITECTURE

Preset:        {config.preset}
Sharing Mode:  {david_config.sharing_mode}
Fusion Mode:   {david_config.fusion_mode}
Scales:        {len(david_config.scales)} scales - {david_config.scales}
Feature Dim:   {david_config.feature_dim}
Parameters:    {best_metrics.get('parameters', 0):,}

═══════════════════════════════════════════════════════════════

πŸ“ˆ TRAINING CURVE

"""
    
    if training_history and 'val_acc' in training_history:
        summary += "Epoch | Train Acc | Val Acc  | Learning Rate\n"
        summary += "------|-----------|----------|--------------\n"
        
        for i, epoch in enumerate(training_history.get('epochs', [])):
            train_acc = training_history['train_acc'][i] if i < len(training_history['train_acc']) else 0
            val_acc = training_history['val_acc'][i] if i < len(training_history['val_acc']) else 0
            lr = training_history['lr'][i] if i < len(training_history['lr']) else 0
            
            marker = " πŸ‘‘" if val_acc == best_acc else ""
            summary += f"{epoch:5d} | {train_acc:8.2f}% | {val_acc:7.2f}%{marker} | {lr:.2e}\n"
    
    summary += f"""
═══════════════════════════════════════════════════════════════

πŸ“ FILES

Best Model:    best_model_acc{best_acc:.2f}.safetensors
Config:        david_config.json
Training Cfg:  train_config.json
History:       training_history.json

═══════════════════════════════════════════════════════════════

Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
"""
    
    with open(summary_path, 'w') as f:
        f.write(summary)
    
    print(f"[πŸ“„] Created MODEL_SUMMARY.txt")
    return summary_path


def update_models_index(
    config: DavidTrainingConfig,
    david_config: DavidArchitectureConfig,
    best_metrics: Dict,
    model_name: str
):
    """Update master models index file tracking all trained models."""
    
    if not config.upload_to_hub or not config.hf_repo:
        return
    
    try:
        from huggingface_hub import hf_hub_download
        api = HfApi()
        
        # Try to download existing index
        try:
            index_path = hf_hub_download(
                repo_id=config.hf_repo,
                filename="MODELS_INDEX.json",
                repo_type="model"
            )
            with open(index_path, 'r') as f:
                models_index = json.load(f)
        except:
            # Create new index if doesn't exist
            models_index = {
                "repository": config.hf_repo,
                "updated": datetime.now().isoformat(),
                "models": []
            }
        
        # Add current model entry
        model_entry = {
            "model_name": model_name,
            "run_id": config.run_id,
            "timestamp": datetime.now().isoformat(),
            "best_val_acc": best_metrics.get('best_val_acc', 0.0),
            "best_epoch": best_metrics.get('best_epoch', 0),
            "num_scales": len(david_config.scales),
            "scales": david_config.scales,
            "parameters": best_metrics.get('parameters', 0),
            "sharing_mode": david_config.sharing_mode,
            "fusion_mode": david_config.fusion_mode,
            "preset": config.preset,
            "weights_path": f"weights/{model_name}/{config.run_id}/best_model_acc{best_metrics.get('best_val_acc', 0.0):.2f}.safetensors",
            "config_path": f"weights/{model_name}/{config.run_id}/david_config.json",
            "history_path": f"weights/{model_name}/{config.run_id}/training_history.json"
        }
        
        # Remove old entry for same run_id if exists (update)
        models_index["models"] = [m for m in models_index["models"] if m.get("run_id") != config.run_id]
        models_index["models"].append(model_entry)
        
        # Sort by accuracy (descending)
        models_index["models"].sort(key=lambda x: x.get("best_val_acc", 0), reverse=True)
        models_index["updated"] = datetime.now().isoformat()
        models_index["total_models"] = len(models_index["models"])
        
        # Save locally
        with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as f:
            json.dump(models_index, f, indent=2)
            temp_path = f.name
        
        # Upload to hub root
        api.upload_file(
            path_or_fileobj=temp_path,
            path_in_repo="MODELS_INDEX.json",
            repo_id=config.hf_repo,
            commit_message=f"Update models index - {model_name} @ {best_metrics.get('best_val_acc', 0.0):.2f}%"
        )
        
        os.unlink(temp_path)
        print(f"[πŸ“Š] Updated MODELS_INDEX.json - {len(models_index['models'])} models tracked")
        
    except Exception as e:
        print(f"[⚠️] Failed to update models index: {e}")


def upload_to_huggingface(
    local_dir: str,
    repo_id: str,
    commit_message: str,
    path_in_repo: Optional[str] = None,
    patterns: Optional[List[str]] = None
):
    """Upload directory to HuggingFace Hub."""
    
    try:
        api = HfApi()
        
        # Create repo if it doesn't exist
        try:
            create_repo(repo_id, exist_ok=True, repo_type="model")
            print(f"[πŸ€—] Repo ready: {repo_id}")
        except Exception as e:
            print(f"[⚠️] Repo exists or creation failed: {e}")
        
        # Upload folder
        if patterns:
            # Upload specific patterns
            for pattern in patterns:
                matching_files = list(Path(local_dir).rglob(pattern))
                for file_path in matching_files:
                    rel_path = file_path.relative_to(local_dir)
                    if path_in_repo:
                        repo_path = f"{path_in_repo}/{rel_path}"
                    else:
                        repo_path = str(rel_path)
                    
                    api.upload_file(
                        path_or_fileobj=str(file_path),
                        path_in_repo=repo_path,
                        repo_id=repo_id,
                        commit_message=commit_message
                    )
        else:
            # Upload entire folder
            api.upload_folder(
                folder_path=local_dir,
                repo_id=repo_id,
                path_in_repo=path_in_repo,
                commit_message=commit_message
            )
        
        print(f"[βœ…] Uploaded to Hub: https://huggingface.co/{repo_id}")
        
    except Exception as e:
        print(f"[❌] Hub upload failed: {e}")
        print(f"    Continuing training (files saved locally)")


def prepare_hub_upload(
    weights_dir: str,
    runs_dir: str,
    config: DavidTrainingConfig,
    david_config: DavidArchitectureConfig,
    best_metrics: Dict,
    model_name: str
):
    """Prepare and upload all artifacts to HuggingFace Hub."""
    
    if not config.upload_to_hub or not config.hf_repo:
        return
    
    print("\n[πŸ€—] Preparing HuggingFace Hub upload...")
    
    # Create model summary file
    summary_path = create_model_summary(weights_dir, config, david_config, best_metrics, model_name)
    
    # Update master models index
    update_models_index(config, david_config, best_metrics, model_name)
    
    api = HfApi()
    try:
        create_repo(config.hf_repo, exist_ok=True, repo_type="model")
    except:
        pass
    
    # Create temporary directory for root files
    with tempfile.TemporaryDirectory() as temp_dir:
        # Generate README at root
        readme_path = os.path.join(temp_dir, "README.md")
        readme_content = generate_model_readme(config, david_config, best_metrics, config.run_id)
        with open(readme_path, 'w') as f:
            f.write(readme_content)
        print(f"[πŸ“] Generated README.md")
        
        # Save best_model.json at root
        best_json_path = os.path.join(temp_dir, "best_model.json")
        save_best_model_json(best_json_path, best_metrics, config, david_config)
        
        # Upload root files (README.md, best_model.json)
        print(f"[πŸ“€] Uploading root files...")
        
        api.upload_file(
            path_or_fileobj=readme_path,
            path_in_repo="README.md",
            repo_id=config.hf_repo,
            commit_message=f"Update README - Run {config.run_id}"
        )
        
        api.upload_file(
            path_or_fileobj=best_json_path,
            path_in_repo="best_model.json",
            repo_id=config.hf_repo,
            commit_message=f"Update metrics - Run {config.run_id}"
        )
    
    # Upload ONLY essential weight files (not entire directory!)
    weights_repo_path = f"weights/{model_name}/{config.run_id}"
    best_acc = best_metrics.get('best_val_acc', 0.0)
    
    print(f"[πŸ“€] Uploading essential files to {weights_repo_path}...")
    
    # List of specific files to upload (not entire directory)
    files_to_upload = [
        ('MODEL_SUMMARY.txt', 'MODEL_SUMMARY.txt'),
        ('training_history.json', 'training_history.json'),
        ('david_config.json', 'david_config.json'),
        ('train_config.json', 'train_config.json'),
        (f'best_model_acc{best_acc:.2f}.safetensors', f'best_model_acc{best_acc:.2f}.safetensors'),
        (f'best_model_acc{best_acc:.2f}_metadata.json', f'best_model_acc{best_acc:.2f}_metadata.json'),
    ]
    
    for local_filename, repo_filename in files_to_upload:
        local_path = os.path.join(weights_dir, local_filename)
        if os.path.exists(local_path):
            try:
                api.upload_file(
                    path_or_fileobj=local_path,
                    path_in_repo=f"{weights_repo_path}/{repo_filename}",
                    repo_id=config.hf_repo,
                    commit_message=f"Update {repo_filename} - Run {config.run_id}"
                )
            except Exception as e:
                print(f"[⚠️] Failed to upload {repo_filename}: {e}")
    
    print(f"[βœ…] Uploaded to Hub: https://huggingface.co/{config.hf_repo}")
    
    # Upload tensorboard logs (only if they exist and it's final upload)
    # Skip TensorBoard during training to avoid huge uploads every epoch
    # if os.path.exists(runs_dir):
    #     runs_repo_path = f"runs/{model_name}/{config.run_id}"
    #     print(f"[πŸ“€] Uploading TensorBoard logs to {runs_repo_path}...")
    #     upload_to_huggingface(
    #         local_dir=runs_dir,
    #         repo_id=config.hf_repo,
    #         commit_message=f"Upload TensorBoard logs - {model_name} - Run {config.run_id}",
    #         path_in_repo=runs_repo_path
    #     )


# ============================================================================
# CHECKPOINT UTILITIES
# ============================================================================

def save_checkpoint(
    filepath: str,
    david: David,
    optimizer: torch.optim.Optimizer,
    scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
    epoch: int,
    metrics: Dict,
    train_config: DavidTrainingConfig
):
    """Save checkpoint in PyTorch and/or SafeTensors format."""
    
    checkpoint = {
        'epoch': epoch,
        'model_state_dict': david.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'scheduler_state_dict': scheduler.state_dict() if scheduler else None,
        'metrics': metrics,
        'train_config': train_config.to_dict(),
    }
    
    # Add accuracy to filename if available
    val_acc = metrics.get('best_val_acc') or metrics.get('val_acc')
    if val_acc:
        acc_suffix = f"_acc{val_acc:.2f}"
        filepath = filepath + acc_suffix
    
    if train_config.save_format in ['pytorch', 'both']:
        torch.save(checkpoint, filepath + '.pth')
        print(f"[πŸ’Ύ] Saved PyTorch: {filepath}.pth")
    
    if train_config.save_format in ['safetensors', 'both']:
        try:
            from safetensors.torch import save_file
            
            # Save model state
            model_state = {k: v.contiguous() for k, v in david.state_dict().items()}
            save_file(model_state, filepath + '.safetensors')
            
            # Save metadata separately (now includes full training history)
            metadata = {k: v for k, v in checkpoint.items() 
                       if k not in ['model_state_dict']}
            with open(filepath + '_metadata.json', 'w') as f:
                json.dump(metadata, f, indent=2, default=str)
            
            print(f"[πŸ’Ύ] Saved SafeTensors: {filepath}.safetensors")
        except ImportError:
            print(f"[⚠️] SafeTensors not available, skipping")


def load_checkpoint(
    checkpoint_path: str,
    david: David,
    optimizer: Optional[torch.optim.Optimizer] = None,
    scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
    device: str = "cuda"
) -> Tuple[int, Dict]:
    """Load checkpoint and return epoch and metrics."""
    
    if checkpoint_path.endswith('.safetensors'):
        # Load SafeTensors format
        try:
            from safetensors.torch import load_file
            
            model_state = load_file(checkpoint_path, device=device)
            david.load_state_dict(model_state)
            
            # Load metadata
            metadata_path = checkpoint_path.replace('.safetensors', '_metadata.json')
            with open(metadata_path, 'r') as f:
                metadata = json.load(f)
            
            epoch = metadata.get('epoch', 0)
            metrics = metadata.get('metrics', {})
            
            if optimizer and 'optimizer_state_dict' in metadata:
                optimizer.load_state_dict(metadata['optimizer_state_dict'])
            
            if scheduler and 'scheduler_state_dict' in metadata and metadata['scheduler_state_dict']:
                scheduler.load_state_dict(metadata['scheduler_state_dict'])
            
            print(f"[βœ…] Loaded from SafeTensors: {checkpoint_path}")
            return epoch, metrics
            
        except ImportError:
            raise ImportError("safetensors not installed")
    
    else:
        # Load PyTorch format
        checkpoint = torch.load(checkpoint_path, map_location=device)
        
        david.load_state_dict(checkpoint['model_state_dict'])
        
        if optimizer and 'optimizer_state_dict' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        
        if scheduler and 'scheduler_state_dict' in checkpoint and checkpoint['scheduler_state_dict']:
            scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        
        print(f"[βœ…] Loaded from PyTorch: {checkpoint_path}")
        return checkpoint['epoch'], checkpoint.get('metrics', {})


# ============================================================================
# DATASET
# ============================================================================

class ImageNetHFDataset(Dataset):
    """PyTorch Dataset wrapper for HuggingFace ImageNet features."""
    
    def __init__(self, dataset_name: str, model_variant: str, split: str = "train"):
        # Load only the specific split to avoid downloading all data
        print(f"[πŸ“₯] Loading {split} split for {model_variant}...")
        self.dataset = load_dataset(
            dataset_name, 
            name=model_variant,  # Dataset configuration/variant name
            split=split          # Only load this specific split
        )
        self.length = len(self.dataset)
        print(f"[βœ…] Loaded {self.length:,} samples from {split} split")
    
    def __len__(self):
        return self.length
    
    def __getitem__(self, idx):
        item = self.dataset[idx]
        features = torch.tensor(item['clip_features'], dtype=torch.float32)
        label = torch.tensor(item['label'], dtype=torch.long)
        return features, label


class MergedImageNetDataset(Dataset):
    """
    Merge multiple CLIP variants into a single dataset.
    Perfect for testing if David can unify different encoder spaces!
    """
    
    def __init__(
        self, 
        dataset_name: str, 
        model_variants: List[str],  # e.g., ['clip_vit_b16', 'clip_vit_laion_b16']
        split: str = "train",
        shuffle_seed: int = 42
    ):
        print(f"[πŸ”€] Creating merged dataset from {len(model_variants)} variants...")
        
        self.datasets = []
        self.cumulative_lengths = [0]
        
        # Load each variant
        for variant in model_variants:
            print(f"[πŸ“₯] Loading {split} split for {variant}...")
            ds = load_dataset(
                dataset_name,
                name=variant,
                split=split
            )
            self.datasets.append(ds)
            self.cumulative_lengths.append(self.cumulative_lengths[-1] + len(ds))
            print(f"[βœ…] Loaded {len(ds):,} samples from {variant}")
        
        self.total_length = self.cumulative_lengths[-1]
        
        # Create shuffled indices for fair mixing
        print(f"[🎲] Shuffling {self.total_length:,} samples (seed={shuffle_seed})...")
        rng = np.random.RandomState(shuffle_seed)
        self.shuffle_indices = rng.permutation(self.total_length)
        
        print(f"[βœ…] Merged dataset ready: {self.total_length:,} samples from {len(model_variants)} encoders")
    
    def __len__(self):
        return self.total_length
    
    def __getitem__(self, idx):
        # Map shuffled index to original dataset
        actual_idx = int(self.shuffle_indices[idx])
        
        # Find which dataset this index belongs to
        dataset_idx = 0
        for i, cumsum in enumerate(self.cumulative_lengths[1:]):
            if actual_idx < cumsum:
                dataset_idx = i
                break
        
        # Get item from the correct dataset
        local_idx = actual_idx - self.cumulative_lengths[dataset_idx]
        item = self.datasets[dataset_idx][local_idx]
        
        features = torch.tensor(item['clip_features'], dtype=torch.float32)
        label = torch.tensor(item['label'], dtype=torch.long)
        
        return features, label


def create_dataloaders(config: DavidTrainingConfig):
    """Create train and validation dataloaders."""
    
    # Check if model_variant is a list (multi-encoder experiment)
    if isinstance(config.model_variant, list):
        print(f"[πŸ§ͺ] MULTI-ENCODER EXPERIMENT: Merging {len(config.model_variant)} variants")
        train_dataset = MergedImageNetDataset(
            config.dataset_name, 
            config.model_variant,  # List of variants
            "train"
        )
        val_dataset = MergedImageNetDataset(
            config.dataset_name, 
            config.model_variant,
            "validation"
        )
    else:
        # Single encoder (normal mode)
        train_dataset = ImageNetHFDataset(
            config.dataset_name, config.model_variant, "train"
        )
        val_dataset = ImageNetHFDataset(
            config.dataset_name, config.model_variant, "validation"
        )
    
    train_loader = DataLoader(
        train_dataset,
        batch_size=config.batch_size,
        shuffle=True,
        num_workers=config.num_workers,
        pin_memory=config.pin_memory,
        prefetch_factor=config.prefetch_factor,
        persistent_workers=config.persistent_workers
    )
    
    val_loader = DataLoader(
        val_dataset,
        batch_size=config.batch_size * 2,
        shuffle=False,
        num_workers=config.num_workers,
        pin_memory=config.pin_memory,
        prefetch_factor=config.prefetch_factor,
        persistent_workers=config.persistent_workers
    )
    
    return train_loader, val_loader


# ============================================================================
# CRYSTAL GENERATOR
# ============================================================================

class CrystalGenerator:
    """Generate crystals for all scales."""
    
    def __init__(self, num_classes: int, scales: List[int], device: str = "cuda"):
        self.num_classes = num_classes
        self.scales = scales
        self.device = device
        self.factories = {
            scale: SimplexFactory(k=4, embed_dim=scale, method="random")
            for scale in scales
        }
    
    def generate(self, seed: int = 42) -> Tuple[Dict[int, torch.Tensor], Dict[int, torch.Tensor]]:
        """Generate anchors and crystals for all scales."""
        
        anchors_dict = {}
        crystals_dict = {}
        
        for scale in tqdm(self.scales, desc="Generating crystals"):
            factory = self.factories[scale]
            batch_crystals = []
            
            for class_idx in range(self.num_classes):
                crystal = factory.build(
                    backend="torch",
                    device=self.device,
                    dtype=torch.float32,
                    seed=seed + class_idx,
                    validate=True
                )
                batch_crystals.append(crystal)
            
            crystals = torch.stack(batch_crystals)
            anchors = F.normalize(crystals[:, 0, :], dim=-1)
            
            # Verify anchor diversity
            anchor_sims = anchors @ anchors.T
            off_diag = anchor_sims[~torch.eye(self.num_classes, dtype=bool, device=anchors.device)]
            max_sim = off_diag.max().item()
            mean_sim = off_diag.mean().item()
            
            print(f"  Scale {scale}: max_sim={max_sim:.4f}, mean_sim={mean_sim:.4f}")
            
            if max_sim > 0.99:
                print(f"  ⚠️ WARNING: Anchors too similar at scale {scale}!")
            
            anchors_dict[scale] = anchors
            crystals_dict[scale] = crystals
        
        return anchors_dict, crystals_dict


# ============================================================================
# TRAINING LOOP
# ============================================================================

def train_epoch(
    david: David,
    train_loader: DataLoader,
    optimizer: torch.optim.Optimizer,
    criterion: MultiScaleCrystalLoss,
    anchors_dict: Dict[int, torch.Tensor],
    crystals_dict: Dict[int, torch.Tensor],
    epoch: int,
    config: DavidTrainingConfig,
    writer: Optional[SummaryWriter],
    global_step: int
) -> Tuple[float, float, int, Dict]:
    """Train for one epoch - Pure FP32."""
    
    david.train()
    david.update_epoch(epoch)
    
    total_loss = 0
    correct = 0
    total = 0
    loss_components_sum = {}
    
    active_scales = david.get_active_scales()
    
    pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config.num_epochs}")
    
    for batch_idx, (features, labels) in enumerate(pbar):
        features = features.cuda(non_blocking=True)
        labels = labels.cuda(non_blocking=True)
        
        # Zero gradients
        optimizer.zero_grad()
        
        # Forward pass - Pure FP32, no autocast
        combined, logits_list, features_list, fusion_weights = david(
            features, anchors_dict, return_all_scales=True
        )
        
        # Compute loss
        losses = criterion(
            combined, logits_list, features_list,
            labels, crystals_dict, epoch
        )
        
        # Backward
        losses['total'].backward()
        
        # Gradient analysis
        if config.track_gradients and batch_idx % config.log_interval == 0:
            grad_stats = analyze_gradients(david, config)
            if writer:
                step = global_step + batch_idx
                writer.add_scalar('train/grad_mean', grad_stats['mean'], step)
                writer.add_scalar('train/grad_max', grad_stats['max'], step)
                writer.add_scalar('train/grad_num_small', grad_stats['num_small'], step)
        
        # Scale small gradients
        scale_small_gradients(david, config)
        
        # Gradient clipping
        torch.nn.utils.clip_grad_norm_(david.parameters(), config.gradient_clip)
        
        # Optimizer step
        optimizer.step()
        
        # Metrics
        total_loss += losses['total'].item()
        _, predicted = torch.max(combined, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        
        # Accumulate loss components
        for key, value in losses.items():
            if key not in loss_components_sum:
                loss_components_sum[key] = 0.0
            loss_components_sum[key] += value.item()
        
        # Logging
        if writer and batch_idx % config.log_interval == 0:
            step = global_step + batch_idx
            writer.add_scalar('train/loss_batch', losses['total'].item(), step)
            writer.add_scalar('train/acc_batch', 100 * correct / total, step)
            
            if config.log_loss_components:
                for key, value in losses.items():
                    if key != 'total':
                        writer.add_scalar(f'train/loss_{key}', value.item(), step)
            
            if config.log_fusion_weights and fusion_weights is not None:
                if fusion_weights.dim() == 2:
                    mean_weights = fusion_weights.mean(dim=0)
                    for i, w in enumerate(mean_weights):
                        if i < len(active_scales):
                            writer.add_scalar(
                                f'train/fusion_weight_{active_scales[i]}',
                                w.item(), step
                            )
            
            writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], step)
        
        pbar.set_postfix({
            'loss': f'{total_loss / (batch_idx + 1):.4f}',
            'acc': f'{100 * correct / total:.2f}%'
        })
        
        global_step += 1
    
    # Average loss components
    avg_components = {k: v / len(train_loader) for k, v in loss_components_sum.items()}
    
    return (
        total_loss / len(train_loader),
        100 * correct / total,
        global_step,
        avg_components
    )


@torch.no_grad()
def validate(
    david: David,
    val_loader: DataLoader,
    anchors_dict: Dict[int, torch.Tensor],
    config: DavidTrainingConfig
) -> Tuple[float, Dict[int, float]]:
    """Validate model - Pure FP32."""
    
    david.eval()
    
    correct = 0
    total = 0
    active_scales = david.get_active_scales()
    scale_correct = {scale: 0 for scale in active_scales}
    
    for features, labels in tqdm(val_loader, desc="Validation", leave=False):
        features = features.cuda(non_blocking=True)
        labels = labels.cuda(non_blocking=True)
        
        # Forward pass - no autocast
        combined, logits_list, _, _ = david(
            features, anchors_dict, return_all_scales=True
        )
        
        _, predicted = torch.max(combined, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        
        for i, scale in enumerate(active_scales):
            if i < len(logits_list):
                _, scale_pred = torch.max(logits_list[i], 1)
                scale_correct[scale] += (scale_pred == labels).sum().item()
    
    accuracy = 100 * correct / total
    scale_accs = {s: 100 * scale_correct[s] / total for s in scale_correct}
    
    return accuracy, scale_accs


# ============================================================================
# MAIN TRAINING FUNCTION
# ============================================================================

def train_david(config: DavidTrainingConfig):
    """Main training pipeline."""
    
    # Enable TensorFloat32 for better performance on Ampere+ GPUs
    torch.set_float32_matmul_precision('high')
    
    print("="*80)
    print("🌟 DAVID TRAINING PIPELINE")
    print("="*80)
    print(f"Run ID: {config.run_id}")
    print(f"Preset: {config.preset}")
    print(f"Batch Size: {config.batch_size}")
    print(f"Learning Rate: {config.learning_rate}")
    print(f"Mixed Precision: {config.use_mixed_precision}")
    print(f"TensorFloat32: Enabled (high precision)")
    print("="*80)
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Load or create David config FIRST (needed for model_name)
    if config.custom_config_path:
        david_config = DavidArchitectureConfig.from_json(config.custom_config_path)
        print(f"[πŸ“] Loaded custom config: {config.custom_config_path}")
    elif config.preset:
        david_config = DavidPresets.get_preset(config.preset)
        print(f"[βš™οΈ] Using preset: {config.preset}")
    else:
        raise ValueError("Must specify either preset or custom_config_path")
    
    # Create model name from architecture
    model_name = f"David-{david_config.sharing_mode}-{david_config.fusion_mode}"
    print(f"[🏷️] Model: {model_name}")
    
    # Setup directories with proper hierarchy: weights/model_name/timestamp/
    weights_dir = os.path.join(config.base_dir, "weights", model_name, config.run_id)
    runs_dir = os.path.join(config.base_dir, "runs", model_name, config.run_id)
    os.makedirs(weights_dir, exist_ok=True)
    os.makedirs(runs_dir, exist_ok=True)
    
    print(f"[πŸ“] Weights: {weights_dir}")
    print(f"[πŸ“] Logs: {runs_dir}")
    
    writer = SummaryWriter(runs_dir)
    
    # Apply overrides
    if config.num_classes_override:
        david_config.num_classes = config.num_classes_override
    if config.use_belly_override is not None:
        david_config.use_belly = config.use_belly_override
    if config.belly_expand_override is not None:
        david_config.belly_expand = config.belly_expand_override
    if config.progressive_training_override is not None:
        david_config.progressive_training = config.progressive_training_override
        if not david_config.progressive_training:
            # Disable warmup if progressive training disabled
            david_config.scale_warmup_epochs = {s: 0 for s in david_config.scales}
    
    # Override scale warmup schedule if provided
    if config.scale_warmup_epochs_override is not None:
        david_config.scale_warmup_epochs = config.scale_warmup_epochs_override
        # Enable progressive training if custom schedule provided
        if not david_config.progressive_training:
            print(f"[βš™οΈ] Enabling progressive training (custom warmup schedule provided)")
            david_config.progressive_training = True
    
    print(f"[βš™οΈ] Progressive training: {david_config.progressive_training}")
    if david_config.progressive_training:
        print(f"    Scale warmup schedule: {david_config.scale_warmup_epochs}")
    
    # Save configs
    david_config_path = os.path.join(weights_dir, "david_config.json")
    david_config.to_json(david_config_path)
    print(f"[πŸ’Ύ] Saved David config: {david_config_path}")
    
    train_config_path = os.path.join(weights_dir, "train_config.json")
    config.to_json(train_config_path)
    print(f"[πŸ’Ύ] Saved training config: {train_config_path}")
    
    # Initialize David
    david = David.from_config(david_config).cuda()
    print(f"\n{david}\n")
    
    # Count parameters
    total_params = sum(p.numel() for p in david.parameters())
    trainable_params = sum(p.numel() for p in david.parameters() if p.requires_grad)
    print(f"[πŸ“Š] Total Parameters: {total_params:,}")
    print(f"[πŸ“Š] Trainable Parameters: {trainable_params:,}")
    
    # Load data
    train_loader, val_loader = create_dataloaders(config)
    
    # Generate crystals
    crystal_gen = CrystalGenerator(
        david_config.num_classes,
        david_config.scales,
        str(device)
    )
    anchors_dict, crystals_dict = crystal_gen.generate()
    
    # Setup training
    criterion = MultiScaleCrystalLoss(
        scales=david_config.scales,
        num_classes=david_config.num_classes,
        use_rose_loss=config.use_rose_loss,
        use_cayley_loss=config.use_cayley_loss,
        rose_initial_weight=config.rose_initial_weight,
        rose_max_weight=config.rose_max_weight,
        cayley_weight=config.cayley_weight,
        scale_loss_balance=config.scale_loss_balance
    ).cuda()
    
    optimizer = create_optimizer(david, config)
    scheduler = create_scheduler(optimizer, config)
    
    controller = AdaptiveTrainingController(david, config)
    
    # Tracking
    best_val_acc = 0.0
    best_epoch = 0
    best_scale_accs = {}
    global_step = 0
    final_train_acc = 0.0
    final_train_loss = 0.0
    
    # Training history for epoch-by-epoch tracking
    training_history = {
        'epochs': [],
        'train_loss': [],
        'train_acc': [],
        'val_acc': [],
        'scale_accs': {},
        'lr': []
    }
    
    # DIAGNOSTIC: Test one forward/backward pass before training
    print("\n[πŸ”] Running diagnostic forward/backward pass...")
    david.train()
    
    # Get a small batch
    for features_test, labels_test in train_loader:
        features_test = features_test.cuda(non_blocking=True)[:8]  # Just 8 samples
        labels_test = labels_test.cuda(non_blocking=True)[:8]
        
        # Forward
        combined_test, logits_test, features_test_out, _ = david(
            features_test, anchors_dict, return_all_scales=True
        )
        
        # Loss
        losses_test = criterion(
            combined_test, logits_test, features_test_out,
            labels_test, crystals_dict, epoch=0
        )
        
        print(f"   Initial loss: {losses_test['total'].item():.6f}")
        print(f"   Loss components:")
        for key, value in losses_test.items():
            if key != 'total':
                print(f"      {key}: {value.item():.6f}")
        
        # Backward
        optimizer.zero_grad()
        losses_test['total'].backward()
        
        # Check gradients
        grad_count = sum(1 for p in david.parameters() if p.grad is not None and p.grad.norm() > 0)
        total_grad_params = sum(1 for p in david.parameters() if p.requires_grad)
        print(f"   Parameters with non-zero gradients: {grad_count}/{total_grad_params}")
        
        if grad_count == 0:
            print(f"   ❌ ERROR: No gradients! Training will not work.")
            return None, 0.0
        elif grad_count < total_grad_params * 0.5:
            print(f"   ⚠️ WARNING: Less than 50% of parameters have gradients")
        else:
            print(f"   βœ… Gradients look good")
        
        break  # Only test one batch
    
    print("\n[πŸš€] Starting training...\n")
    
    for epoch in range(config.num_epochs):
        epoch_start = time.time()
        
        # Train
        train_loss, train_acc, global_step, loss_components = train_epoch(
            david, train_loader, optimizer, criterion,
            anchors_dict, crystals_dict, epoch, config,
            writer, global_step
        )
        
        # Validate
        val_acc, scale_accs = validate(david, val_loader, anchors_dict, config)
        
        # Update controller
        controller.update_metrics(scale_accs, val_acc)
        controller.apply_adaptive_strategies(scale_accs, epoch)
        
        # Step scheduler
        if scheduler:
            scheduler.step()
        
        epoch_time = time.time() - epoch_start
        
        # Print
        print(f"\nπŸ“Š Epoch {epoch+1}/{config.num_epochs} ({epoch_time:.1f}s)")
        print(f"   Train: Loss={train_loss:.4f}, Acc={train_acc:.2f}%")
        print(f"   Val: Acc={val_acc:.2f}% (Best: {best_val_acc:.2f}%)")
        print(f"   Active scales: {david.get_active_scales()}")
        print(f"   LR: {optimizer.param_groups[0]['lr']:.2e}")
        
        if config.log_loss_components and loss_components:
            print(f"   Loss breakdown:")
            for key, value in sorted(loss_components.items()):
                if key != 'total':
                    print(f"      {key:20s}: {value:.6f}")
        
        for scale, acc in scale_accs.items():
            frozen = "❄️" if controller.scales_frozen.get(scale, False) else "πŸ”₯"
            print(f"      {frozen} Scale {scale}: {acc:.2f}%")
        
        # Update tracking
        final_train_acc = train_acc
        final_train_loss = train_loss
        
        # Record training history
        training_history['epochs'].append(epoch + 1)
        training_history['train_loss'].append(train_loss)
        training_history['train_acc'].append(train_acc)
        training_history['val_acc'].append(val_acc)
        training_history['lr'].append(optimizer.param_groups[0]['lr'])
        
        # Record per-scale accuracies
        for scale, acc in scale_accs.items():
            if scale not in training_history['scale_accs']:
                training_history['scale_accs'][scale] = []
            training_history['scale_accs'][scale].append(acc)
        
        # TensorBoard
        writer.add_scalar('train/loss', train_loss, epoch)
        writer.add_scalar('train/acc', train_acc, epoch)
        writer.add_scalar('val/acc', val_acc, epoch)
        
        for scale, acc in scale_accs.items():
            writer.add_scalar(f'val/acc_scale_{scale}', acc, epoch)
        
        # Save best
        if val_acc > best_val_acc:
            best_val_acc = val_acc
            best_epoch = epoch
            best_scale_accs = scale_accs.copy()
            
            # Save training history alongside best model
            history_path = os.path.join(weights_dir, 'training_history.json')
            with open(history_path, 'w') as f:
                json.dump(training_history, f, indent=2)
            
            save_checkpoint(
                os.path.join(weights_dir, 'best_model'),
                david, optimizer, scheduler, epoch,
                {
                    'best_val_acc': best_val_acc,
                    'best_epoch': best_epoch,
                    'scale_accuracies': best_scale_accs,
                    'training_history': training_history
                },
                config
            )
            
            # Upload to hub when best model improves
            if config.upload_to_hub:
                best_metrics = {
                    'best_val_acc': best_val_acc,
                    'best_epoch': best_epoch,
                    'scale_accuracies': best_scale_accs,
                    'final_train_acc': train_acc,
                    'final_train_loss': train_loss,
                    'training_history': training_history,
                    'parameters': total_params
                }
                prepare_hub_upload(weights_dir, runs_dir, config, david_config, best_metrics, model_name)
        
        # Periodic save
        if (epoch + 1) % config.save_interval == 0:
            save_checkpoint(
                os.path.join(weights_dir, f'checkpoint_epoch_{epoch+1}'),
                david, optimizer, scheduler, epoch,
                {'val_acc': val_acc},
                config
            )
    
    # Final save
    save_checkpoint(
        os.path.join(weights_dir, 'final_model'),
        david, optimizer, scheduler, config.num_epochs - 1,
        {'final_val_acc': val_acc},
        config
    )
    
    writer.close()
    
    # Final hub upload with all artifacts
    if config.upload_to_hub:
        print("\n[πŸ€—] Performing final HuggingFace Hub upload...")
        final_metrics = {
            'best_val_acc': best_val_acc,
            'best_epoch': best_epoch,
            'scale_accuracies': best_scale_accs,
            'final_train_acc': final_train_acc,
            'final_train_loss': final_train_loss,
            'training_history': training_history,
            'parameters': total_params
        }
        prepare_hub_upload(weights_dir, runs_dir, config, david_config, final_metrics, model_name)
        
        # Upload TensorBoard logs at the end
        if os.path.exists(runs_dir):
            runs_repo_path = f"runs/{model_name}/{config.run_id}"
            print(f"[πŸ“€] Uploading TensorBoard logs to {runs_repo_path}...")
            upload_to_huggingface(
                local_dir=runs_dir,
                repo_id=config.hf_repo,
                commit_message=f"Upload TensorBoard logs - {model_name} - Run {config.run_id}",
                path_in_repo=runs_repo_path
            )
    
    print("\n" + "="*80)
    print(f"πŸŽ‰ Training Complete!")
    print(f"   Best Val Acc: {best_val_acc:.2f}% (Epoch {best_epoch+1})")
    print(f"   Final Train Acc: {final_train_acc:.2f}%")
    print(f"   Weights: {weights_dir}")
    if config.upload_to_hub:
        print(f"   Hub: https://huggingface.co/{config.hf_repo}")
    print("="*80)
    
    return david, best_val_acc


# ============================================================================
# USAGE EXAMPLE
# ============================================================================

if __name__ == "__main__":
    # ============================================================================
    # EXPERIMENT 1: Single Encoder (Standard Training)
    # ============================================================================
    
    # config = DavidTrainingConfig(
    #     preset="balanced",
    #     model_variant="clip_vit_b16",  # Single encoder
    #     
    #     num_epochs=10,
    #     batch_size=1024,
    #     learning_rate=1e-2,
    #     
    #     use_rose_loss=True,
    #     rose_initial_weight=0.1,
    #     rose_max_weight=0.5,
    #     
    #     upload_to_hub=True,
    #     hf_repo="AbstractPhil/gated-david",
    # )
    
    # ============================================================================
    # EXPERIMENT 2: Multi-Encoder Unified Space (THE TEST!)
    # ============================================================================
    
    config = DavidTrainingConfig(
        preset="balanced",  # 4 scales: [256, 512, 768, 1024]
        
        # πŸ§ͺ MULTI-ENCODER: OpenAI CLIP-B/32 vs LAION CLIP-B/32
        model_variant=["clip_vit_b16", "clip_vit_laion_b32"],  # Both B/32!
        
        num_epochs=10,
        batch_size=1024,
        learning_rate=1e-2,
        
        # Custom warmup for 4 scales
        scale_warmup_epochs_override={
            256: 0,
            512: 2,
            768: 5,
            1024: 8
        },
        
        use_rose_loss=True,
        rose_initial_weight=0.2,  # Higher for diversity
        rose_max_weight=0.8,
        
        use_cayley_loss=True,  # Extra geometric regularization
        cayley_weight=0.01,
        
        freeze_strategy="never",
        gradient_clip=10.0,
        
        save_format="safetensors",
        upload_to_hub=False,
        hf_repo="YourName/YourRepoHere"#"AbstractPhil/david-shared-space",
    )
    
    print("="*80)
    print("πŸ§ͺ UNIFIED SPACE EXPERIMENT")
    print("="*80)
    print(f"Testing if David can unify:")
    if isinstance(config.model_variant, list):
        for variant in config.model_variant:
            print(f"  β€’ {variant}")
    print("="*80)
    
    david, best_acc = train_david(config)