AvitoTech1 commited on
Commit
84d3da5
·
verified ·
1 Parent(s): d9d9eea

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +149 -0
  2. config.json +45 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - siglip
5
+ - siglip2
6
+ - vision
7
+ - clip
8
+ - image-embeddings
9
+ - pet-recognition
10
+ model_id: AvitoTech/SigLIP2-giant-for-animal-identification
11
+ pipeline_tag: image-feature-extraction
12
+ ---
13
+
14
+ # SigLIP2-Giant Fine-tuned for Animal Identification
15
+
16
+ Fine-tuned SigLIP2-Giant model for individual animal identification, specializing in distinguishing between unique cats and dogs. This model produces robust image embeddings optimized for pet recognition, re-identification, and verification tasks.
17
+
18
+
19
+ ## Model Details
20
+
21
+ - **Base Model**: google/siglip2-giant-opt-patch16-384
22
+ - **Input**: Images (384x384)
23
+ - **Output**: Image embeddings (1152-dimensional)
24
+ - **Task**: Individual animal identification and verification
25
+
26
+ ## Training Data
27
+
28
+ The model was trained on a comprehensive dataset combining multiple sources:
29
+
30
+ - **[PetFace Dataset](https://arxiv.org/abs/2407.13555)**: Large-scale animal face dataset with 257,484 unique individuals across 13 animal families
31
+ - **[Dogs-World](https://www.kaggle.com/datasets/lextoumbourou/dogs-world)**: Kaggle dataset for dog breed and individual identification
32
+ - **[LCW (Labeled Cats in the Wild)](https://www.kaggle.com/datasets/dseidli/lcwlabeled-cats-in-the-wild)**: Cat identification dataset
33
+ - **Web-scraped Data**: Additional curated images from various sources
34
+
35
+ **Total Dataset Statistics:**
36
+ - **1,904,157** total photographs
37
+ - **695,091** unique individual animals (cats and dogs)
38
+
39
+ ## Training Details
40
+
41
+ **Training Configuration:**
42
+ - **Batch Size**: 116 samples (58 unique identities × 2 photos each)
43
+ - **Optimizer**: Adam with learning rate 1e-4
44
+ - **Training Duration**: 10 epochs
45
+ - **Transfer Learning**: Final 5 transformer blocks unfrozen, lower layers frozen to preserve pre-trained features
46
+
47
+ **Loss Function:**
48
+ The model is trained using a combined loss function consisting of:
49
+ 1. **Triplet Loss** (margin α=0.45): Encourages separation between different animal identities
50
+ 2. **Intra-Pair Variance Regularization** (ε=0.01): Promotes consistency across multiple photos of the same animal
51
+
52
+ Combined as: L_total = 1.0 × L_triplet + 0.5 × L_var
53
+
54
+ This approach creates compact feature clusters for each individual animal while maintaining large separation between different identities.
55
+
56
+ ## Performance Metrics
57
+
58
+ The model has been benchmarked against various vision encoders on multiple pet recognition datasets:
59
+
60
+ ### [Cat Individual Images Dataset](https://www.kaggle.com/datasets/timost1234/cat-individuals)
61
+
62
+ | Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
63
+ |-------|---------|-----|-------|-------|--------|
64
+ | CLIP-ViT-Base | 0.9821 | 0.0604 | 0.8359 | 0.9579 | 0.9711 |
65
+ | DINOv2-Small | 0.9904 | 0.0422 | 0.8547 | 0.9660 | 0.9764 |
66
+ | SigLIP-Base | 0.9899 | 0.0390 | 0.8649 | 0.9757 | 0.9842 |
67
+ | SigLIP2-Base | 0.9894 | 0.0388 | 0.8660 | 0.9772 | 0.9863 |
68
+ | Zer0int CLIP-L | 0.9881 | 0.0509 | 0.8768 | 0.9767 | 0.9845 |
69
+ | **SigLIP2-Giant** | **0.9940** | **0.0344** | **0.8899** | **0.9868** | **0.9921** |
70
+ | SigLIP2-Giant + E5-Small-v2 + gating | 0.9929 | 0.0344 | 0.8952 | 0.9872 | 0.9932 |
71
+
72
+ ### [DogFaceNet Dataset](https://www.springerprofessional.de/en/a-deep-learning-approach-for-dog-face-verification-and-recogniti/17094782)
73
+
74
+ | Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
75
+ |-------|---------|-----|-------|-------|--------|
76
+ | CLIP-ViT-Base | 0.9739 | 0.0772 | 0.4350 | 0.6417 | 0.7204 |
77
+ | DINOv2-Small | 0.9829 | 0.0571 | 0.5581 | 0.7540 | 0.8139 |
78
+ | SigLIP-Base | 0.9792 | 0.0606 | 0.5848 | 0.7746 | 0.8319 |
79
+ | SigLIP2-Base | 0.9776 | 0.0672 | 0.5925 | 0.7856 | 0.8422 |
80
+ | Zer0int CLIP-L | 0.9814 | 0.0625 | 0.6289 | 0.8092 | 0.8597 |
81
+ | **SigLIP2-Giant** | **0.9926** | **0.0326** | **0.7475** | **0.9009** | **0.9316** |
82
+ | SigLIP2-Giant + E5-Small-v2 + gating | 0.9920 | 0.0314 | 0.7818 | 0.9233 | 0.9482 |
83
+
84
+ ### Combined Test Dataset (Overall Performance)
85
+
86
+ | Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
87
+ |-------|---------|-----|-------|-------|--------|
88
+ | CLIP-ViT-Base | 0.9752 | 0.0729 | 0.6511 | 0.8122 | 0.8555 |
89
+ | DINOv2-Small | 0.9848 | 0.0546 | 0.7180 | 0.8678 | 0.9009 |
90
+ | SigLIP-Base | 0.9811 | 0.0572 | 0.7359 | 0.8831 | 0.9140 |
91
+ | SigLIP2-Base | 0.9793 | 0.0631 | 0.7400 | 0.8889 | 0.9197 |
92
+ | Zer0int CLIP-L | 0.9842 | 0.0565 | 0.7626 | 0.8994 | 0.9267 |
93
+ | **SigLIP2-Giant** | **0.9912** | **0.0378** | **0.8243** | **0.9471** | **0.9641** |
94
+ | SigLIP2-Giant + E5-Small-v2 + gating | 0.9882 | 0.0422 | 0.8428 | 0.9576 | 0.9722 |
95
+
96
+ **Metrics Explanation:**
97
+ - **ROC AUC**: Area Under the Receiver Operating Characteristic Curve - measures the model's ability to distinguish between different individuals
98
+ - **EER**: Equal Error Rate - the error rate where false acceptance and false rejection rates are equal
99
+ - **Top-K**: Accuracy of correct identification within the top K predictions
100
+
101
+ ## Basic Usage
102
+
103
+ ### Installation
104
+
105
+ ```bash
106
+ pip install transformers torch pillow
107
+ ```
108
+
109
+ ### Get Image Embedding
110
+
111
+ ```python
112
+ import torch
113
+ import torch.nn.functional as F
114
+ from PIL import Image
115
+ from transformers import SiglipModel, SiglipProcessor
116
+
117
+ # Load model and processor
118
+ processor = SiglipProcessor.from_pretrained("google/siglip2-giant-opt-patch16-384")
119
+ model = SiglipModel.from_pretrained("AvitoTech/SigLIP2-giant-for-animal-identification")
120
+
121
+ device = "cuda" if torch.cuda.is_available() else "cpu"
122
+ model = model.to(device).eval()
123
+
124
+ # Load and process image
125
+ image = Image.open("your_image.jpg").convert("RGB")
126
+
127
+ with torch.no_grad():
128
+ inputs = processor(images=[image], return_tensors="pt").to(device)
129
+ image_features = model.get_image_features(**inputs)
130
+ image_features = F.normalize(image_features, dim=1)
131
+
132
+ print(f"Embedding shape: {image_features.shape}") # torch.Size([1, 1152])
133
+ ```
134
+
135
+ ## Citation
136
+
137
+ If you use this model in your research or applications, please cite our work:
138
+
139
+ ```
140
+ BibTeX citation will be added upon paper publication.
141
+ ```
142
+
143
+ ## Use Cases
144
+
145
+ - Individual pet identification and re-identification
146
+ - Lost and found pet matching systems
147
+ - Veterinary record management
148
+ - Animal behavior monitoring
149
+ - Wildlife conservation and tracking
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SiglipModel"
4
+ ],
5
+ "model_type": "siglip",
6
+ "text_config": {
7
+ "architectures": [
8
+ "SiglipTextModel"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "dropout": 0.0,
12
+ "hidden_act": "gelu",
13
+ "hidden_size": 1152,
14
+ "initializer_factor": 1.0,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4608,
17
+ "layer_norm_eps": 1e-06,
18
+ "max_position_embeddings": 64,
19
+ "model_type": "siglip_text_model",
20
+ "num_attention_heads": 16,
21
+ "num_hidden_layers": 32,
22
+ "pad_token_id": 0,
23
+ "vocab_size": 32000
24
+ },
25
+ "vision_config": {
26
+ "architectures": [
27
+ "SiglipVisionModel"
28
+ ],
29
+ "attention_dropout": 0.0,
30
+ "dropout": 0.0,
31
+ "hidden_act": "gelu",
32
+ "hidden_size": 1152,
33
+ "image_size": 384,
34
+ "initializer_factor": 1.0,
35
+ "initializer_range": 0.02,
36
+ "intermediate_size": 4608,
37
+ "layer_norm_eps": 1e-06,
38
+ "model_type": "siglip_vision_model",
39
+ "num_attention_heads": 16,
40
+ "num_channels": 3,
41
+ "num_hidden_layers": 32,
42
+ "patch_size": 16
43
+ },
44
+ "vision_dim": 1152
45
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa361d6f7561a3346313acf84e972c9256062814fdaa6dd0840caf84b5d3cb18
3
+ size 7487682160