--- license: apache-2.0 tags: - pruned - python - optimized - wanda base_model: LGAI-EXAONE/EXAONE-4.0-1.2B pipeline_tag: text-generation --- # EXAONE-4.0-1.2B-python-safe > 🎯 **PYTHON-optimized** | 📦 **Safe** pruning | ⚡ **1% weights pruned** This model is a **conservatively pruned** version of [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | **Python** | 76.9% | 76.9% ⭐ | → | | Html | 20.0% | 20.0% | → | | Trivia | 86.7% | 86.7% | → | | Math | 80.0% | 80.0% | → | | Reasoning | 75.0% | 75.0% | → | | Medical | 42.9% | 42.9% | → | | Linux | 23.1% | 23.1% | → | | Writing | 54.5% | 45.5% | ↓ 9.1% | **Average**: 57.4% → 56.2% (-1.1%) **Python Retention**: 100.0% ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/EXAONE-4.0-1.2B-python-safe") tokenizer = AutoTokenizer.from_pretrained("CompactAI/EXAONE-4.0-1.2B-python-safe") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B) | | Specialization | Python | | Prune Mode | Safe | | Weight Reduction | 1% weights pruned | ## License This model inherits the license from the base model.