maaza-nlm-orchestrator-9.6m-v1.2
63% adversarial accuracy (+37% from v1.0) · 86% in-distribution · 39ms latency · 9.60M parameters
The fastest adversarial-robust orchestrator ever shipped under 20M parameters. The official routing brain for the MCPBodega ecosystem.
What's New in v1.2
- +37% adversarial robustness (26% → 63%) via 10x upsampled adversarial training
- Trained on 496 diverse adversarial examples (typos, slang, synonyms, contractions)
- No wrapper, no fallback — pure model improvement
- Same architecture, same latency class
Performance (v1.2 — December 2025)
| Metric | v1.0 | v1.2 | Change |
|---|---|---|---|
| In-distribution | 88% | 86% | -2% |
| Adversarial (typos/slang) | 26% | 63% | +37% |
| Valid JSON | 99%+ | 99%+ | — |
| Latency | 33ms | 39ms | +6ms |
v1.2's adversarial training reduces the need for production wrappers. The model now handles typos, slang, and informal input natively.
Paper
Task-Specialized Micro Language Models Outperform Larger Zero-Shot Models on Structured Data Extraction
Authors: CycleCore Technologies Date: November 22, 2025 Version: 0.7
NLM Taxonomy (CycleCore, 2025)
| Category | Parameters | Typical Capability |
|---|---|---|
| NLM | <10M | Routing, classification, orchestration |
| MLM | 10–250M | Structured extraction |
| SLM | 250M–1.5B | Reliable reasoning + extraction |
| LLM | >1.5B | General-purpose reasoning |
maaza-nlm-orchestrator-9.6m is the current flagship of the NLM category.
Model Card
| Metric | Value |
|---|---|
| Parameters | 9,600,000 |
| Architecture | 7-layer Transformer decoder, SwiGLU, RoPE |
| Hidden size / Heads | 320 / 8 |
| Vocabulary | 8,000 (BPE, tool-aware) |
| Context length | 512 tokens |
Trained exclusively on 36 real, production-ready MCP tools from MCPBodega (Doom, Puppeteer, code execution, file I/O, database queries, etc.). No synthetic or placeholder tools.
Comparison
| Model | Parameters | Tool Accuracy | Adversarial | Latency |
|---|---|---|---|---|
| maaza-nlm-orchestrator-9.6m-v1.2 | 9.6M | 86% | 63% | 39ms |
| maaza-nlm-orchestrator-9.6m (v1.0) | 9.6M | 88% | 26% | 33ms |
| NVIDIA Orchestrator-8B | 8B | 78% | — | ≥800ms |
| Gorilla-7B | 7B | 52–58% | — | 1–3s |
| ToolLlama-7B | 7B | 48–55% | — | 2–4s |
Ranks #1 under 20M parameters on adversarial robustness.
One-line deployment
mcpbodega deploy nano-orchestrator
Usage Example (PyTorch)
from model import MaazaNanoModel, MaazaNanoConfig
from tokenizer import BPETokenizer
import torch, json
tokenizer = BPETokenizer.load("tokenizer.json")
config = MaazaNanoConfig(**json.load(open("config.json")))
model = MaazaNanoModel(config)
model.load_state_dict(torch.load("model.pt", weights_only=True))
model.eval().cuda()
prompt = "<|user|>search for cats on the internet<|assistant|>"
input_ids = torch.tensor([tokenizer.encode(prompt)]).cuda()
with torch.no_grad():
for _ in range(64):
logits = model(input_ids)["logits"]
next_token = logits[0, -1].argmax(-1)
input_ids = torch.cat([input_ids, next_token[None, None]], dim=-1)
if next_token.item() in tokenizer.special_tokens.values():
break
print(tokenizer.decode(input_ids[0].tolist()))
# → [{"tool": "web_search", "params": {"query": "cats"}}]
v1.2 Training Details
Fine-tuned from v1.0 on adversarial data:
- 2,520 clean examples
- 496 adversarial examples (10x upsampled = 4,960)
- Total: 7,480 examples (66% adversarial ratio)
- 5 epochs, LR 3e-5, batch 32
Adversarial perturbations:
- Typos (random character swaps)
- Synonyms (search→find, weather→climate)
- Slang suffixes (pls, bruh, yo, lol)
- Contractions (you→u, please→plz, for→4)
Supported Tools (36)
| Tool | Description |
|---|---|
web_search |
Search the web |
web_fetch |
Fetch URL content |
file_read |
Read local files |
file_write |
Write local files |
code_execute_python |
Run Python code |
code_execute_bash |
Run shell commands |
code_execute_js |
Run JavaScript |
email_send |
Send emails |
slack_send |
Send Slack messages |
calendar_add |
Create calendar events |
database_query |
Query databases |
puppeteer_navigate |
Browser navigation |
puppeteer_click |
Browser clicks |
puppeteer_screenshot |
Take screenshots |
doom_mcp |
Play Doom |
bitchat_send |
BLE mesh chat |
voice_mcp |
Text-to-speech |
maaza_extract_json |
Extract structured data |
json_validate |
Validate JSON |
csv_parse |
Parse CSV files |
regex_match |
Pattern matching |
calculator |
Math operations |
weather_lookup |
Weather data |
crypto_lookup |
Crypto prices |
stock_lookup |
Stock prices |
news_fetch |
News headlines |
mcpbodega_chat |
MCPBodega chat rooms |
mcpbodega_deploy |
Deploy MCPs |
mcpbodega_list |
List MCPs |
github_issue |
Create GitHub issues |
scratchpad_mcp |
Temporary storage |
health_check |
Service health checks |
cyclecore_terminal |
Terminal commands |
image_caption |
Image descriptions |
slmbench_query |
Benchmark queries |
translator |
Translation |
License
Apache 2.0
Citation
@misc{cyclecore2025maaza-nlm-v1.2,
author = {CycleCore Technologies},
title = {maaza-nlm-orchestrator-9.6m-v1.2: Adversarial-Robust Tool Routing},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/CycleCoreTechnologies/maaza-nlm-orchestrator-9.6m-v1.2}
}
CycleCore Technologies · @CycleCoreTech
cyclecore.ai · mcpbodega.com · slmbench.com
December 2025
- Downloads last month
- 27
Evaluation results
- Tool Selection Accuracy (In-Distribution)self-reported86.000
- Tool Selection Accuracy (Adversarial)self-reported63.000
- Average Latency (ms)self-reported39.000