Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,94 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: es
|
| 3 |
+
license: mit
|
| 4 |
+
library_name: transformers
|
| 5 |
+
tags:
|
| 6 |
+
- spam-detection
|
| 7 |
+
- sms
|
| 8 |
+
- text-classification
|
| 9 |
+
- beto
|
| 10 |
+
- bert
|
| 11 |
+
- spanish
|
| 12 |
+
- pytorch
|
| 13 |
+
datasets:
|
| 14 |
+
- sms_spam
|
| 15 |
+
metrics:
|
| 16 |
+
- accuracy
|
| 17 |
+
- f1
|
| 18 |
+
- precision
|
| 19 |
+
- recall
|
| 20 |
+
base_model: dccuchile/bert-base-spanish-wwm-cased
|
| 21 |
+
pipeline_tag: text-classification
|
| 22 |
+
widget:
|
| 23 |
+
- text: "¡FELICIDADES! Ganaste un premio de $1000. Haz clic aquí para reclamarlo"
|
| 24 |
+
example_title: "Spam - Premio falso"
|
| 25 |
+
- text: "¡Increíble! Ha ganado un viaje con todos los gastos pagados a Cancún. Llame al 1-800-VIAJES"
|
| 26 |
+
example_title: "Spam - Oferta fraudulenta"
|
| 27 |
+
- text: "URGENTE: Su cuenta ha sido suspendida. Haga clic aquí para reactivarla"
|
| 28 |
+
example_title: "Spam - Phishing bancario"
|
| 29 |
+
- text: "Hola mamá, llegaré tarde a casa. Nos vemos en la cena"
|
| 30 |
+
example_title: "Legítimo - Mensaje familiar"
|
| 31 |
+
- text: "Buenos días, confirmo la reunión de mañana a las 3pm"
|
| 32 |
+
example_title: "Legítimo - Mensaje de trabajo"
|
| 33 |
+
model-index:
|
| 34 |
+
- name: spamvision-beto
|
| 35 |
+
results:
|
| 36 |
+
- task:
|
| 37 |
+
type: text-classification
|
| 38 |
+
name: Text Classification
|
| 39 |
+
dataset:
|
| 40 |
+
name: Spanish SMS Spam Detection
|
| 41 |
+
type: sms_spam
|
| 42 |
+
metrics:
|
| 43 |
+
- type: accuracy
|
| 44 |
+
value: 0.962
|
| 45 |
+
name: Accuracy
|
| 46 |
+
- type: f1
|
| 47 |
+
value: 0.951
|
| 48 |
+
name: F1 Score
|
| 49 |
+
- type: precision
|
| 50 |
+
value: 0.948
|
| 51 |
+
name: Precision
|
| 52 |
+
- type: recall
|
| 53 |
+
value: 0.955
|
| 54 |
+
name: Recall
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
# 🛡️ SpamVision BETO - Spanish SMS Spam Detector
|
| 58 |
+
|
| 59 |
+
<div align="center">
|
| 60 |
+
<img src="https://img.shields.io/badge/Language-Spanish-green" alt="Spanish">
|
| 61 |
+
<img src="https://img.shields.io/badge/Accuracy-96.2%25-blue" alt="Accuracy">
|
| 62 |
+
<img src="https://img.shields.io/badge/F1--Score-95.1%25-orange" alt="F1">
|
| 63 |
+
<img src="https://img.shields.io/badge/License-MIT-yellow" alt="License">
|
| 64 |
+
</div>
|
| 65 |
+
|
| 66 |
+
## 📖 Model Description
|
| 67 |
+
|
| 68 |
+
**SpamVision BETO** is a fine-tuned BERT model for Spanish language specifically designed to detect spam SMS messages with high accuracy. Built on top of the [BETO](https://github.com/dccuchile/beto) (BERT trained on Spanish corpus), this model achieves **96.2% accuracy** in distinguishing between legitimate messages and spam.
|
| 69 |
+
|
| 70 |
+
This model is part of the [SpamVision project](https://github.com/tu-usuario/spamvision-api), a hybrid AI system that combines rule-based filtering (AFD) with deep learning for maximum spam detection performance.
|
| 71 |
+
|
| 72 |
+
### Key Features
|
| 73 |
+
|
| 74 |
+
- 🎯 **High Accuracy**: 96.2% on test dataset
|
| 75 |
+
- ⚡ **Fast Inference**: < 200ms per message
|
| 76 |
+
- 🇪🇸 **Spanish-optimized**: Fine-tuned on Spanish SMS data
|
| 77 |
+
- 📱 **SMS-focused**: Optimized for short messages (< 160 characters)
|
| 78 |
+
- 🔄 **Production-ready**: Used in real-world mobile app
|
| 79 |
+
|
| 80 |
+
### Model Architecture
|
| 81 |
+
|
| 82 |
+
- **Base Model**: `dccuchile/bert-base-spanish-wwm-cased`
|
| 83 |
+
- **Parameters**: ~110M
|
| 84 |
+
- **Layers**: 12 transformer encoder layers
|
| 85 |
+
- **Hidden Size**: 768
|
| 86 |
+
- **Max Sequence Length**: 128 tokens
|
| 87 |
+
- **Vocabulary Size**: 31,002 tokens
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
|
| 91 |
+
## 🚀 Quick Start
|
| 92 |
+
|
| 93 |
+
### Installation
|
| 94 |
+
|