--- license: apache-2.0 license_link: https://huggingface.co/MIAOAI/qa-retailpro/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat - ecommerce - qna library_name: transformers --- # 🛒 qa-retailpro: Instruction-tuned LLM for E-commerce Customer Support `qa-retailpro` is a **domain-adapted instruction-tuned language model** designed for retail and e-commerce customer service scenarios. Based on the powerful Qwen2.5-7B backbone, this model is optimized to handle natural conversations involving product queries, logistics, refunds, order tracking, returns, and general shopping support. --- ## 💡 Key Features - **Retail-tuned Instruction Model**: Trained on common e-commerce Q&A tasks. - **Context-aware & Conversational**: Understands multi-turn shopping dialogues. - **Multilingual Ready**: Supports over 29 languages including English, Chinese, French, Spanish, etc. - **Structured Output Capable**: Great at generating FAQ entries, JSON, and table-friendly responses. - **Long-Context Support**: Up to **128K tokens** (with YaRN extension). - Built on: `Qwen2.5-7B` by MIAOAI. --- ## 🚀 Quickstart ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "MIAOAI/qa-retailpro" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "What is your return policy for electronics?" messages = [ {"role": "system", "content": "You are a helpful retail assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) output = model.generate(**model_inputs, max_new_tokens=512) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) ```` --- ## 🛍️ Example Use Cases * 🤖 E-commerce chatbot agents * 📦 Order/return tracking Q\&A * ❓ FAQ auto-generation * 📊 Product detail and review summarization * 🌐 Cross-border retail customer service --- ## 🧰 Long Context Configuration To handle long inputs (over 32K tokens), modify your `config.json`: ```json "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } ``` For more info, see [YaRN paper](https://arxiv.org/abs/2309.00071). --- ## 📚 Citation ```bibtex @misc{qa-retailpro, title = {QA-RetailPro: Instruction-tuned Qwen2.5 model for E-commerce Assistants}, author = {MIAOAI Team}, year = {2025}, url = {https://huggingface.co/MIAOAI/qa-retailpro} } ``` --- ## 📎 License Apache 2.0 License. See [LICENSE](https://huggingface.co/MIAOAI/qa-retailpro/blob/main/LICENSE) for full terms. --- ## 🤝 Contact For business inquiries or collaborations, please reach out via [Hugging Face Discussions](https://huggingface.co/MIAOAI).