| { | |
| "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", | |
| "version": "0.0.1", | |
| "changelog": { | |
| "0.0.1": "Initial version" | |
| }, | |
| "monai_version": "1.5.0", | |
| "pytorch_version": "2.6.0", | |
| "numpy_version": "1.26.4", | |
| "optional_packages_version": {}, | |
| "required_packages_version": { | |
| "setuptools": "75.8.0", | |
| "opencv-python-headless": "4.11.0.86", | |
| "pandas": "2.3.0", | |
| "seaborn": "0.13.2", | |
| "scikit-learn": "1.6.1", | |
| "progressbar": "2.5", | |
| "pydicom": "3.0.1", | |
| "fire": "0.7.0", | |
| "torchvision": "0.21.0", | |
| "detectron2": "0.6", | |
| "lxml": "5.4.0", | |
| "pillow": "11.2.1" | |
| }, | |
| "name": "retinalOCT_RPD_segmentation", | |
| "task": "Reticular Pseudodrusen (RPD) instance segmentation.", | |
| "description": "This network detects and segments Reticular Pseudodrusen (RPD) instances in Optical Coherence Tomography (OCT) B-scans which can be presented in a vol or dicom format.", | |
| "authors": "Yelena Bagdasarova, Scott Song", | |
| "copyright": "Copyright (c) 2022, uw-biomedical-ml", | |
| "network_data_format": { | |
| "inputs": { | |
| "image": { | |
| "type": "image", | |
| "format": "magnitude", | |
| "modality": "OCT", | |
| "num_channels": 1, | |
| "spatial_shape": [ | |
| 496, | |
| 1024 | |
| ], | |
| "dtype": "int16", | |
| "value_range": [ | |
| 0, | |
| 256 | |
| ], | |
| "is_patch_data": false, | |
| "channel_def": { | |
| "0": "image" | |
| } | |
| } | |
| }, | |
| "preprocessed_data_sources": { | |
| "vol_file": { | |
| "type": "image", | |
| "format": "magnitude", | |
| "modality": "OCT", | |
| "num_channels": 1, | |
| "spatial_shape": [ | |
| 496, | |
| 1024, | |
| "D" | |
| ], | |
| "dtype": "int16", | |
| "value_range": [ | |
| 0, | |
| 256 | |
| ], | |
| "description": "The pixel array of each OCT slice is extracted with volreader and the png files saved to <extracted_dir>/<some>/<file>/<name>/<some_file_name>_oct_<DDD>.png on disk, where <DDD> is the slice number and a nested hierarchy of folders is created using the underscores in the original filename. " | |
| }, | |
| "dicom_series": { | |
| "type": "image", | |
| "format": "magnitude", | |
| "modality": "OCT", | |
| "SOP class UID": "1.2.840.10008.5.1.4.1.1.77.1.5.4", | |
| "num_channels": 1, | |
| "spatial_shape": [ | |
| 496, | |
| 1024, | |
| "D" | |
| ], | |
| "dtype": "int16", | |
| "value_range": [ | |
| 0, | |
| 256 | |
| ], | |
| "description": "The pixel array of each OCT slice is extracted with pydicom and the png files saved to <extracted_dir>/<SOPInstanceUID>/<SOPInstanceUID>_oct_<DDD>.png on disk, where <DDD> is the slice number. " | |
| } | |
| }, | |
| "outputs": { | |
| "pred": { | |
| "dtype": "dictionary", | |
| "type": "dictionary", | |
| "format": "COCO", | |
| "modality": "n/a", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "num_channels": 1, | |
| "spatial_shape": [ | |
| 496, | |
| 1024 | |
| ], | |
| "channel_def": { | |
| "0": "RPD" | |
| }, | |
| "description": "This output is a JSON file in COCO Instance Segmentation format, containing bounding boxes, segmentation masks, and output probabilities for detected instances." | |
| } | |
| }, | |
| "post_processed_outputs": { | |
| "binary segmentation": { | |
| "type": "image", | |
| "format": "TIFF", | |
| "modality": "OCT", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| 496, | |
| 1024 | |
| ], | |
| "description": "This output is a multi-page TIFF file. Each page of the TIFF image corresponds to a binary segmentation mask for a single OCT slice from the input volume. The segmentation masks are stacked in the same order as the original OCT slices." | |
| }, | |
| "binary segmentation overlay": { | |
| "type": "image", | |
| "format": "TIFF", | |
| "modality": "OCT", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| 496, | |
| 1024 | |
| ], | |
| "description": "This output is a multi-page TIFF file. Each page of the TIFF image corresponds to a single OCT slice from the input volume overlayed with the detected binary segmentation mask." | |
| }, | |
| "instance segmentation overlay": { | |
| "type": "image", | |
| "format": "TIFF", | |
| "modality": "OCT", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| 496, | |
| 1024 | |
| ], | |
| "description": "This output is a multi-page TIFF file. Each page of the TIFF image corresponds to a single OCT slice from the input volume overlayed with the detected binary segmentation mask." | |
| } | |
| } | |
| } | |
| } | |