{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.0.1", "changelog": { "0.0.1": "Initial version" }, "monai_version": "1.5.0", "pytorch_version": "2.6.0", "numpy_version": "1.26.4", "optional_packages_version": {}, "required_packages_version": { "setuptools": "75.8.0", "opencv-python-headless": "4.11.0.86", "pandas": "2.3.0", "seaborn": "0.13.2", "scikit-learn": "1.6.1", "progressbar": "2.5", "pydicom": "3.0.1", "fire": "0.7.0", "torchvision": "0.21.0", "detectron2": "0.6", "lxml": "5.4.0", "pillow": "11.2.1" }, "name": "retinalOCT_RPD_segmentation", "task": "Reticular Pseudodrusen (RPD) instance segmentation.", "description": "This network detects and segments Reticular Pseudodrusen (RPD) instances in Optical Coherence Tomography (OCT) B-scans which can be presented in a vol or dicom format.", "authors": "Yelena Bagdasarova, Scott Song", "copyright": "Copyright (c) 2022, uw-biomedical-ml", "network_data_format": { "inputs": { "image": { "type": "image", "format": "magnitude", "modality": "OCT", "num_channels": 1, "spatial_shape": [ 496, 1024 ], "dtype": "int16", "value_range": [ 0, 256 ], "is_patch_data": false, "channel_def": { "0": "image" } } }, "preprocessed_data_sources": { "vol_file": { "type": "image", "format": "magnitude", "modality": "OCT", "num_channels": 1, "spatial_shape": [ 496, 1024, "D" ], "dtype": "int16", "value_range": [ 0, 256 ], "description": "The pixel array of each OCT slice is extracted with volreader and the png files saved to ////_oct_.png on disk, where is the slice number and a nested hierarchy of folders is created using the underscores in the original filename. " }, "dicom_series": { "type": "image", "format": "magnitude", "modality": "OCT", "SOP class UID": "1.2.840.10008.5.1.4.1.1.77.1.5.4", "num_channels": 1, "spatial_shape": [ 496, 1024, "D" ], "dtype": "int16", "value_range": [ 0, 256 ], "description": "The pixel array of each OCT slice is extracted with pydicom and the png files saved to //_oct_.png on disk, where is the slice number. " } }, "outputs": { "pred": { "dtype": "dictionary", "type": "dictionary", "format": "COCO", "modality": "n/a", "value_range": [ 0, 1 ], "num_channels": 1, "spatial_shape": [ 496, 1024 ], "channel_def": { "0": "RPD" }, "description": "This output is a JSON file in COCO Instance Segmentation format, containing bounding boxes, segmentation masks, and output probabilities for detected instances." } }, "post_processed_outputs": { "binary segmentation": { "type": "image", "format": "TIFF", "modality": "OCT", "num_channels": 3, "spatial_shape": [ 496, 1024 ], "description": "This output is a multi-page TIFF file. Each page of the TIFF image corresponds to a binary segmentation mask for a single OCT slice from the input volume. The segmentation masks are stacked in the same order as the original OCT slices." }, "binary segmentation overlay": { "type": "image", "format": "TIFF", "modality": "OCT", "num_channels": 3, "spatial_shape": [ 496, 1024 ], "description": "This output is a multi-page TIFF file. Each page of the TIFF image corresponds to a single OCT slice from the input volume overlayed with the detected binary segmentation mask." }, "instance segmentation overlay": { "type": "image", "format": "TIFF", "modality": "OCT", "num_channels": 3, "spatial_shape": [ 496, 1024 ], "description": "This output is a multi-page TIFF file. Each page of the TIFF image corresponds to a single OCT slice from the input volume overlayed with the detected binary segmentation mask." } } } }