File size: 3,611 Bytes
0a2d354 e8f61f3 0a2d354 e8f61f3 0a2d354 e8f61f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: mit
language:
- en
base_model:
- mistralai/Mistral-7B-v0.1
- google/gemma-7b
library_name: transformers
tags:
- mergekit
- merged-model
- mistral
- gemma
- language-model
---
# π MistralGemma-Hybrid-7B: A Fusion of Power & Precision
## π Overview
**MistralGemma-Hybrid-7B** is an **experimental hybrid language model** that blends the strengths of **Mistral-7B** and **Gemma-7B** using the **Spherical Linear Interpolation (slerp) merging technique**. Designed to optimize both efficiency and performance, this model offers robust text generation capabilities while leveraging the advantages of both parent models.
π **Created by**: [Matteo Khan]
π **Affiliation**: Apprentice at TW3 Partners (Generative AI Research)
π **License**: MIT
π [Connect with me on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/)
π [Model on Hugging Face](https://huggingface.co/YourProfile/MistralGemma-Hybrid-7B)
## π§ Model Details
- **Model Type**: Hybrid Language Model (Merged)
- **Parent Models**:
- [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [Gemma-7B](https://huggingface.co/google/gemma-7b)
- **Merging Technique**: Slerp Merge (MergeKit)
## π― Intended Use
This model is intended for **research and experimentation** in hybrid model optimization. Potential applications include:
- β
Text Generation
- β
Conversational AI
- β
Creative Writing Assistance
- β
Exploration of Model Merging Effects
## β οΈ Limitations & Considerations
While **MistralGemma-Hybrid-7B** offers enhanced capabilities, it also inherits limitations from its parent models:
- β May generate **inaccurate or misleading** information
- β οΈ Potential for **biased, offensive, or harmful** content
- π Merging may introduce **unpredictable behaviors**
- π Performance may **vary across different tasks**
## π¬ Merging Process & Configuration
This is **not a newly trained model**, but rather a merge of existing models using the following configuration:
```yaml
merge_method: slerp # Using slerp instead of linear
dtype: float16
models:
- model: "mistralai/Mistral-7B-v0.1"
parameters:
weight: 0.5
- model: "google/gemma-7b"
parameters:
weight: 0.5
parameters:
normalize: true
int8_mask: false
rescale: true # Helps with different model scales
layers:
- pattern: ".*"
layer_range: [0, -1]
```
π **No formal evaluation** has been conducted yet. Users are encouraged to **benchmark and share feedback**!
## π Environmental Impact
By utilizing **model merging** rather than training from scratch, **MistralGemma-Hybrid-7B** significantly reduces computational and environmental costs.
## π How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "YourProfile/MistralGemma-Hybrid-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Write a short story about the future of AI."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
**π Citation**
```bibtex
@misc{mistralgemma2025,
title={MistralGemma: A Hybrid Open-Source Language Model},
author={Your Name},
year={2025},
eprint={arXiv:XXXX.XXXXX},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
π© **Feedback & Contact**: Reach out via [Hugging Face](https://huggingface.co/YourProfile).
π **Happy Experimenting!** π |