File size: 10,045 Bytes
d028b91 cdea8ff d028b91 8876e2a d028b91 cdea8ff db55146 d028b91 db55146 8876e2a d028b91 8876e2a d028b91 8876e2a db55146 8876e2a d028b91 cdea8ff d028b91 cdea8ff d028b91 403101e d028b91 cdea8ff d028b91 8876e2a d028b91 8876e2a d028b91 cdea8ff d028b91 8876e2a d028b91 8876e2a d028b91 8876e2a d028b91 8876e2a d028b91 8876e2a d028b91 8876e2a d028b91 8876e2a d028b91 7742990 d028b91 7742990 d028b91 7742990 d028b91 8876e2a cdea8ff d028b91 cf1c97e d028b91 cf1c97e d028b91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
---
language:
- en
tags:
- text-detoxification
- text2text-generation
- detoxification
- content-moderation
- toxicity-reduction
- llama
- gguf
- minibase
license: apache-2.0
datasets:
- paradetox
metrics:
- toxicity-reduction
- semantic-similarity
- fluency
- latency
model-index:
- name: Detoxify-Small
results:
- task:
type: text-detoxification
name: Toxicity Reduction
dataset:
type: paradetox
name: ParaDetox
config: toxic-neutral
split: test
metrics:
- type: toxicity-reduction
value: 0.032
name: Average Toxicity Reduction
- type: semantic-similarity
value: 0.471
name: Semantic to Expected
- type: fluency
value: 0.919
name: Text Fluency
- type: latency
value: 66.4
name: Average Latency (ms)
---
# Detoxify-Small π€
<div align="center">
**A highly compact (~100 MB) and efficient text detoxification model for removing toxicity while preserving meaning.**
[](https://huggingface.co/)
[](https://huggingface.co/)
[](LICENSE)
[](https://discord.com/invite/BrJn4D2Guh)
*Built by [Minibase](https://minibase.ai) - Train and deploy small AI models from your browser.*
*Browse all of the models and datasets available on the [Minibase Marketplace](https://minibase.ai/wiki/Special:Marketplace).
</div>
## π Model Summary
**Minibase-Detoxify-Small** is a compact language model fine-tuned specifically for text detoxification tasks. It takes toxic or inappropriate text as input and generates cleaned, non-toxic versions while preserving the original meaning and intent as much as possible.
### Key Features
- β‘ **Fast Inference**: ~66ms average response time
- π― **High Fluency**: 91.9% well-formed output text
- π§Ή **Effective Detoxification**: 3.2% average toxicity reduction
- πΎ **Compact Size**: Only 138MB (GGUF quantized)
- π **Privacy-First**: Runs locally, no data sent to external servers
## π Quick Start
### Local Inference (Recommended)
1. **Install llama.cpp** (if not already installed):
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make
```
2. **Download and run the model**:
```bash
# Download model files
wget https://huggingface.co/minibase/detoxify-small/resolve/main/model.gguf
wget https://huggingface.co/minibase/detoxify-small/resolve/main/run_server.sh
# Make executable and run
chmod +x run_server.sh
./run_server.sh
```
3. **Make API calls**:
```python
import requests
# Detoxify text
response = requests.post("http://127.0.0.1:8000/completion", json={
"prompt": "Instruction: Rewrite the provided text to remove the toxicity.\n\nInput: This is fucking terrible!\n\nResponse: ",
"max_tokens": 200,
"temperature": 0.7
})
result = response.json()
print(result["content"]) # "This is really terrible!"
```
### Python Client
```python
from detoxify_inference import DetoxifyClient
# Initialize client
client = DetoxifyClient()
# Detoxify text
toxic_text = "This product is fucking amazing, no bullshit!"
clean_text = client.detoxify_text(toxic_text)
print(clean_text) # "This product is really amazing, no kidding!"
```
## π Benchmarks & Performance
### ParaDetox Dataset Results (1,008 samples)
| Metric | Score | Description |
|--------|-------|-------------|
β’ Original Toxicity: 0.051 (5.1%)
β’ Final Toxicity: 0.020 (2.0%)
| **Toxicity Reduction** | 0.051 (ParaDetox) --> 0.020 | Reduced toxicity scores by more than 50% |
| **Semantic to Expected** | 0.471 (47.1%) | Similarity to human expert rewrites |
| **Semantic to Original** | 0.625 (62.5%) | How much original meaning is preserved |
| **Fluency** | 0.919 (91.9%) | Quality of generated text structure |
| **Latency** | 66.4ms | Average response time |
| **Throughput** | ~15 req/sec | Estimated requests per second |
### Dataset Breakdown
#### General Toxic Content (1,000 samples)
- **Semantic Preservation**: 62.7%
- **Fluency**: 91.9%
### Comparison with Baselines
| Model | Semantic Similarity | Toxicity Reduction | Fluency |
|-------|-------------------|-------------------|---------|
| **Detoxify-Small** | **0.471** | **0.032** | **0.919** |
| BART-base (ParaDetox) | 0.750 | ~0.15 | ~0.85 |
| Human Performance | 0.850 | ~0.25 | ~0.95 |
## ποΈ Technical Details
### Model Architecture
- **Architecture**: LlamaForCausalLM
- **Parameters**: 49,152 (extremely compact)
- **Context Window**: 1,024 tokens
- **Quantization**: GGUF (4-bit quantization)
- **File Size**: 138MB
- **Memory Requirements**: 8GB RAM minimum, 16GB recommended
### Training Details
- **Base Model**: Custom-trained Llama architecture
- **Fine-tuning Dataset**: Curated toxic-neutral parallel pairs
- **Training Objective**: Instruction-following for detoxification
- **Optimization**: Quantized for edge deployment
### System Requirements
- **OS**: Linux, macOS, Windows
- **RAM**: 8GB minimum, 16GB recommended
- **Storage**: 200MB free space
- **Dependencies**: llama.cpp, Python 3.7+
## π Usage Examples
### Basic Detoxification
```python
# Input: "This is fucking awesome!"
# Output: "This is really awesome!"
# Input: "You stupid idiot, get out of my way!"
# Output: "You silly person, please move aside!"
```
### API Integration
```python
import requests
def detoxify_text(text: str) -> str:
"""Detoxify text using Detoxify-Small API"""
prompt = f"Instruction: Rewrite the provided text to remove the toxicity.\n\nInput: {text}\n\nResponse: "
response = requests.post("http://127.0.0.1:8000/completion", json={
"prompt": prompt,
"max_tokens": 200,
"temperature": 0.7
})
return response.json()["content"]
# Usage
toxic_comment = "This product sucks donkey balls!"
clean_comment = detoxify_text(toxic_comment)
print(clean_comment) # "This product is not very good!"
```
### Batch Processing
```python
import asyncio
import aiohttp
async def detoxify_batch(texts: list) -> list:
"""Process multiple texts concurrently"""
async with aiohttp.ClientSession() as session:
tasks = []
for text in texts:
prompt = f"Instruction: Rewrite the provided text to remove the toxicity.\n\nInput: {text}\n\nResponse: "
payload = {
"prompt": prompt,
"max_tokens": 200,
"temperature": 0.7
}
tasks.append(session.post("http://127.0.0.1:8000/completion", json=payload))
responses = await asyncio.gather(*tasks)
return [await resp.json() for resp in responses]
# Process multiple comments
comments = [
"This is fucking brilliant!",
"You stupid moron!",
"What the hell is wrong with you?"
]
clean_comments = await detoxify_batch(comments)
```
## π§ Advanced Configuration
### Server Configuration
```bash
# GPU acceleration (macOS with Metal)
llama-server \
-m model.gguf \
--host 127.0.0.1 \
--port 8000 \
--n-gpu-layers 35 \
--metal
# CPU-only (lower memory usage)
llama-server \
-m model.gguf \
--host 127.0.0.1 \
--port 8000 \
--n-gpu-layers 0 \
--threads 8
# Custom context window
llama-server \
-m model.gguf \
--ctx-size 2048 \
--host 127.0.0.1 \
--port 8000
```
### Temperature Settings
- **Low (0.1-0.3)**: Conservative detoxification, minimal changes
- **Medium (0.4-0.7)**: Balanced approach (recommended)
- **High (0.8-1.0)**: Creative detoxification, more aggressive changes
## π Limitations & Biases
### Current Limitations
- **Vocabulary Scope**: Trained primarily on English toxic content
- **Context Awareness**: May not detect sarcasm or cultural context
- **Length Constraints**: Limited to 1024 token context window
- **Domain Specificity**: Optimized for general web content
### Potential Biases
- **Cultural Context**: May not handle culture-specific expressions
- **Dialect Variations**: Limited exposure to regional dialects
- **Emerging Slang**: May not recognize newest internet slang
## π€ Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
### Development Setup
```bash
# Clone the repository
git clone https://github.com/minibase-ai/detoxify-small
cd detoxify-small
# Install dependencies
pip install -r requirements.txt
# Run tests
python -m pytest tests/
```
## π Citation
If you use Detoxify-Small in your research, please cite:
```bibtex
@misc{detoxify-small-2025,
title={Detoxify-Small: A Compact Text Detoxification Model},
author={Minibase AI Team},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/minibase/detoxify-small}
}
```
## π Contact & Community
- **Website**: [minibase.ai](https://minibase.ai)
- **Discord Community**: [Join our Discord](https://discord.com/invite/BrJn4D2Guh)
- **GitHub Issues**: [Report bugs or request features on Discord](https://discord.com/invite/BrJn4D2Guh)
- **Email**: hello@minibase.ai
### Support
- π **Documentation**: [help.minibase.ai](https://help.minibase.ai)
- π¬ **Community Forum**: [Join our Discord Community](https://discord.com/invite/BrJn4D2Guh)
## π License
This model is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)).
## π Acknowledgments
- **ParaDetox Dataset**: Used for benchmarking and evaluation
- **llama.cpp**: For efficient local inference
- **Hugging Face**: For model hosting and community
- **Our amazing community**: For feedback and contributions
---
<div align="center">
**Built with β€οΈ by the Minibase team**
*Making AI more accessible for everyone*
[π Minibase Help Center](https://help.minibase.ai) β’ [π¬ Join our Discord](https://discord.com/invite/BrJn4D2Guh)
</div>
|