File size: 10,971 Bytes
77b9d70 a70d5e5 77b9d70 a70d5e5 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 76d2b30 77b9d70 442acd1 77b9d70 8290c73 f2448de 0d505a8 fc704cf aeb1443 fc704cf edc3c67 fc704cf aeb1443 fc704cf aeb1443 fc704cf edc3c67 aeb1443 fc704cf edc3c67 aeb1443 76d2b30 0d505a8 76d2b30 f2448de 76d2b30 f2448de d554147 77b9d70 d554147 77b9d70 d554147 f2448de d554147 77b9d70 d554147 b88baf1 76d2b30 d554147 76d2b30 2900f99 77b9d70 e37c07d 76d2b30 77b9d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
!pip install sentencepiece
import sentencepiece as spm
import os, json, numpy as np, tensorflow as tf
from tensorflow.keras import layers, Model
import requests
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow.keras.backend as K
print('1')
tf.get_logger().setLevel("ERROR")
SEED = 42
tf.random.set_seed(SEED)
np.random.seed(SEED)
# TPU ์ด๊ธฐํ
try:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local")
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
print("โ
TPU ์ด๊ธฐํ ์๋ฃ:", resolver.cluster_spec().as_dict())
on_tpu = True
except Exception as e:
print("โ ๏ธ TPU ๋ฏธ์ฌ์ฉ, GPU/CPU๋ก ์งํ:", e)
strategy = tf.distribute.get_strategy()
on_tpu = False
# Mixed precision
from tensorflow.keras import mixed_precision
policy = mixed_precision.Policy("mixed_bfloat16" if on_tpu else "float32")
mixed_precision.set_global_policy(policy)
print("โ
Mixed precision:", policy)
# =======================
# 1) ํ์ผ ๋ค์ด๋ก๋
# =======================
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"โ
{save_path} ์ ์ฅ๋จ")
DATA_PATH = "corpus.txt"
TOKENIZER_PATH = "ko_unigram.model"
if not os.path.exists(DATA_PATH):
download_file(
"https://huggingface.co/datasets/Yuchan5386/Prototype/resolve/main/corpus_ko.txt?download=true",
DATA_PATH
)
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/Yuchan5386/Respiso/resolve/main/bpe.model?download=true",
TOKENIZER_PATH
)
sp = spm.SentencePieceProcessor(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
start_id = sp.piece_to_id("<start>")
sep_id = sp.piece_to_id("<sep>")
end_id = sp.piece_to_id("<end>")
unk_id = sp.piece_to_id("<unk>")
vocab_size = sp.get_piece_size()
print(f"โ
Vocabulary size: {vocab_size}")
max_len = 512
batch_size = 128
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
def txt_stream(file_path):
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
text = line.strip()
if not text:
continue
ids = text_to_ids(text)
ids = ids[:max_len - 1] # ๋ง์ง๋ง์ <end> ๋ฃ๊ธฐ ์ํด -1
full_input = ids + [end_id]
pad_len = max_len - len(full_input)
full_input += [pad_id] * pad_len
# target = next-token shifted sequence
target = full_input[1:] + [pad_id]
yield (
tf.convert_to_tensor(full_input, dtype=tf.int32),
tf.convert_to_tensor(target, dtype=tf.int32)
)
LIMIT = 2000000 # ์ํ๋ ๋งํผ
dataset = tf.data.Dataset.from_generator(
lambda: txt_stream(DATA_PATH),
output_signature=(
tf.TensorSpec(shape=(max_len,), dtype=tf.int32),
tf.TensorSpec(shape=(max_len,), dtype=tf.int32),
)
)
dataset = dataset.take(LIMIT).shuffle(2000, seed=SEED).batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE)
with strategy.scope():
dist_dataset = strategy.experimental_distribute_dataset(dataset)
class SwiGLU(layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = layers.Dense(d_ff)
self.out = layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class LoU(layers.Layer):
def __init__(self, d_model, clip_value=5.0, eps=1e-6):
super().__init__()
self.d_model = d_model
self.clip_value = float(clip_value)
self.eps = float(eps)
self.Q = layers.Dense(d_model, dtype='float32')
self.K = layers.Dense(d_model, dtype='float32')
self.V = layers.Dense(d_model, dtype='float32')
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
self.norm1 = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
self.alpha_linear = layers.Dense(1, activation='sigmoid', dtype='float32')
self.glu = SwiGLU(d_model, d_model)
def _ema_over_time(self, score, alpha_dynamic):
seq = tf.transpose(score, perm=[1, 0, 2])
alpha_seq = tf.transpose(alpha_dynamic, perm=[1, 0, 2])
def step(prev_ema, inputs):
x_t, alpha_t = inputs
new = alpha_t * x_t + (1.0 - alpha_t) * prev_ema
return new
init = seq[0]
first_alpha = alpha_seq[0]
remaining_seq = seq[1:]
remaining_alpha = alpha_seq[1:]
elems = (remaining_seq, remaining_alpha)
# tf.scan์ ์ฌ์ฉํ์ฌ ์๊ณ์ด EMA ๊ณ์ฐ
ema_seq = tf.scan(fn=step, elems=elems, initializer=init)
ema_seq = tf.concat([tf.expand_dims(init, 0), ema_seq], axis=0)
ema = tf.transpose(ema_seq, perm=[1, 0, 2])
return ema
# LoU๋ ์๋ Uni-directional Attention/Recurrent Block ์ญํ
def call(self, x):
x_f32 = tf.cast(x, tf.float32)
residual = x_f32
x_f32 = self.norm1(x)
q = self.Q(x_f32)
k = self.K(x_f32)
V = self.V(x_f32)
g_q = (tf.nn.tanh(q) + 1.0) / 2.0
g_k = (tf.nn.tanh(k) + 1.0) / 2.0
score = g_q * g_k
alpha_dynamic = self.alpha_linear(x_f32)
score_ema = self._ema_over_time(score, alpha_dynamic)
mean_last = tf.reduce_mean(score_ema, axis=-1, keepdims=True)
denom = tf.maximum(mean_last, self.eps)
score_norm = score_ema / denom
score_clipped = tf.clip_by_value(score_norm, -self.clip_value, self.clip_value)
x_comb = score_clipped * V
# LoU ๋ธ๋ก์์๋ x_comb + residual ํ CrossBlock์ ํต๊ณผ
out = self.norm(x_comb + residual)
out = self.glu(out)
return tf.cast(out, x.dtype)
class Lo(layers.Layer):
def __init__(self, d_model):
super().__init__()
self.d = layers.Dense(64, activation='silu')
self.w = layers.Dense(d_model)
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
def call(self, x):
p = self.d(x)
p = self.w(p)
return self.norm(p) + x
class Block(layers.Layer):
def __init__(self, d_model):
super().__init__()
self.lou = LoU(d_model)
self.lo = Lo(d_model)
def call(self, x):
x = self.lou(x)
x = self.lo(x)
return x
class ReLM(tf.keras.Model):
def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1):
super().__init__()
self.token_embedding = layers.Embedding(vocab_size, d_model)
self.pos_embedding = layers.Embedding(max_seq_len, d_model)
self.blocks = [Block(d_model) for _ in range(n_layers)]
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype="float32")
def call(self, x, training=False):
batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1]
positions = tf.range(seq_len)[tf.newaxis, :]
x = self.token_embedding(x) + self.pos_embedding(positions)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype)
logits = tf.matmul(x, embedding_matrix, transpose_b=True)
return tf.cast(logits, tf.float32)
def smoothed_loss_keras(y_true, y_pred, eps=0.1):
y_true = tf.cast(y_true, tf.int32)
mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32)
vocab = tf.shape(y_pred)[-1]
y_true_oh = tf.one_hot(y_true, depth=vocab, dtype=tf.float32)
y_true_ls = (1.0 - eps) * y_true_oh + eps / tf.cast(vocab, tf.float32)
log_probs = tf.nn.log_softmax(y_pred, axis=-1)
per_tok = -tf.reduce_sum(y_true_ls * log_probs, axis=-1)
per_tok = per_tok * mask
return tf.reduce_sum(per_tok) / (tf.reduce_sum(mask) + 1e-8)
def masked_perplexity(y_true, y_pred, eps=0.1):
y_true = tf.cast(y_true, tf.int32)
mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32)
vocab = tf.shape(y_pred)[-1]
y_true_oh = tf.one_hot(y_true, depth=vocab, dtype=tf.float32)
y_true_ls = (1.0 - eps) * y_true_oh + eps / tf.cast(vocab, tf.float32)
log_probs = tf.nn.log_softmax(y_pred, axis=-1)
per_tok = -tf.reduce_sum(y_true_ls * log_probs, axis=-1)
per_tok = per_tok * mask
mean_loss = tf.reduce_sum(per_tok) / (tf.reduce_sum(mask) + 1e-8)
return tf.exp(mean_loss)
# =======================
# ๋ชจ๋ธ ์์ฑ & ์ปดํ์ผ
# =======================
with strategy.scope():
model = ReLM(vocab_size=vocab_size, max_seq_len=max_len, d_model=256, n_layers=1)
dummy_input = tf.zeros((batch_size, max_len), dtype=tf.int32)
_ = model(dummy_input, training=False)
model.summary()
optimizer = tf.keras.optimizers.Adam(1e-4, beta_1=0.9, beta_2=0.95, epsilon=1e-8, clipnorm=1.0)
model.compile(optimizer=optimizer, loss=smoothed_loss_keras, metrics=[masked_perplexity])
# ํ์ต
history = model.fit(dist_dataset, epochs=1, verbose=1)
model.save_weights("tf_model.weights.h5")
print("โ
๋ชจ๋ธ ๊ฐ์ค์น ์ ์ฅ ์๋ฃ!")
def generate_text_topp(model, prompt, max_len=512, max_gen=512, p=0.9, temperature=0.8, min_len=20):
model_input = text_to_ids(f"<start> {prompt}")
model_input = model_input[:max_len]
generated = list(model_input)
for step in range(max_gen):
if len(generated) > max_len:
input_seq = generated[-max_len:]
else:
input_seq = generated
input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(input_seq) - 1].numpy()
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
probs = tf.nn.softmax(next_token_logits / temperature).numpy()
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cumulative_probs, p)
top_indices = sorted_indices[:cutoff + 1]
top_probs = sorted_probs[:cutoff + 1]
top_probs /= np.sum(top_probs)
next_token_id = np.random.choice(top_indices, p=top_probs)
if next_token_id == end_id and len(generated) >= min_len:
break
generated.append(int(next_token_id))
return ids_to_text(generated)
print("\n\n===== ์์ฑ ๊ฒฐ๊ณผ =====")
print(generate_text_topp(model, "์ง๋ 2๋
๋์ ์ถ์ฐ์ฐ์ด ๊ตญ๊ฐ๊ฐ ํ์ํ ์ฐ๊ตฌ๋ฅผ", p=0.9)) |