Yuchan
commited on
Update Model.py
Browse files
Model.py
CHANGED
|
@@ -223,7 +223,7 @@ class LoSoU(layers.Layer):
|
|
| 223 |
score = g_q * g_k
|
| 224 |
|
| 225 |
# ๋์ alpha ๊ณ์ฐ: (B, L, d_model) -> (B, L, 1)
|
| 226 |
-
alpha_dynamic = self.alpha_linear(x_f32)
|
| 227 |
# ํ์์ alpha_dynamic์ ๋ํ ํ์ฒ๋ฆฌ (์: min/max ๋ฑ) ๊ฐ๋ฅ
|
| 228 |
# ex: alpha_dynamic = tf.clip_by_value(alpha_dynamic, 0.01, 0.99)
|
| 229 |
|
|
@@ -291,6 +291,7 @@ class ReLaM(tf.keras.Model):
|
|
| 291 |
logits = tf.matmul(x, embedding_matrix, transpose_b=True)
|
| 292 |
return tf.cast(logits, tf.float32)
|
| 293 |
|
|
|
|
| 294 |
|
| 295 |
def masked_loss(y_true, y_pred):
|
| 296 |
loss = loss_fn(y_true, y_pred)
|
|
|
|
| 223 |
score = g_q * g_k
|
| 224 |
|
| 225 |
# ๋์ alpha ๊ณ์ฐ: (B, L, d_model) -> (B, L, 1)
|
| 226 |
+
alpha_dynamic = self.alpha_linear(x_f32) * 0.8 + 0.1 # (B, L, 1)
|
| 227 |
# ํ์์ alpha_dynamic์ ๋ํ ํ์ฒ๋ฆฌ (์: min/max ๋ฑ) ๊ฐ๋ฅ
|
| 228 |
# ex: alpha_dynamic = tf.clip_by_value(alpha_dynamic, 0.01, 0.99)
|
| 229 |
|
|
|
|
| 291 |
logits = tf.matmul(x, embedding_matrix, transpose_b=True)
|
| 292 |
return tf.cast(logits, tf.float32)
|
| 293 |
|
| 294 |
+
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
|
| 295 |
|
| 296 |
def masked_loss(y_true, y_pred):
|
| 297 |
loss = loss_fn(y_true, y_pred)
|