Yuchan
commited on
Create Model_torch.py
Browse files- Model_torch.py +198 -0
Model_torch.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.utils.data import Dataset, DataLoader
|
| 5 |
+
import numpy as np
|
| 6 |
+
import sentencepiece as spm
|
| 7 |
+
|
| 8 |
+
# ===============================
|
| 9 |
+
# SentencePiece
|
| 10 |
+
# ===============================
|
| 11 |
+
sp = spm.SentencePieceProcessor("ko_unigram.model")
|
| 12 |
+
|
| 13 |
+
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
|
| 14 |
+
start_id = sp.piece_to_id("<start>")
|
| 15 |
+
end_id = sp.piece_to_id("<end>")
|
| 16 |
+
vocab_size = sp.get_piece_size()
|
| 17 |
+
max_len = 512
|
| 18 |
+
batch_size = 32
|
| 19 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 20 |
+
|
| 21 |
+
def text_to_ids(text):
|
| 22 |
+
return sp.encode(text, out_type=int)
|
| 23 |
+
|
| 24 |
+
def ids_to_text(ids):
|
| 25 |
+
return sp.decode(ids)
|
| 26 |
+
|
| 27 |
+
# ===============================
|
| 28 |
+
# Dataset
|
| 29 |
+
# ===============================
|
| 30 |
+
class TextDataset(Dataset):
|
| 31 |
+
def __init__(self, file_path, num_lines=None):
|
| 32 |
+
self.lines = []
|
| 33 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 34 |
+
for i, line in enumerate(f):
|
| 35 |
+
if num_lines is not None and i >= num_lines:
|
| 36 |
+
break
|
| 37 |
+
line = line.strip()
|
| 38 |
+
if line:
|
| 39 |
+
self.lines.append(line)
|
| 40 |
+
|
| 41 |
+
def __len__(self):
|
| 42 |
+
return len(self.lines)
|
| 43 |
+
|
| 44 |
+
def __getitem__(self, idx):
|
| 45 |
+
text = self.lines[idx]
|
| 46 |
+
ids = text_to_ids(text)[:max_len-1]
|
| 47 |
+
full_input = ids + [end_id]
|
| 48 |
+
pad_len = max_len - len(full_input)
|
| 49 |
+
full_input += [pad_id]*pad_len
|
| 50 |
+
target = full_input[1:] + [pad_id]
|
| 51 |
+
return torch.tensor(full_input, dtype=torch.long), torch.tensor(target, dtype=torch.long)
|
| 52 |
+
|
| 53 |
+
dataset = TextDataset("corpus.txt", num_lines=100000)
|
| 54 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
| 55 |
+
|
| 56 |
+
# ===============================
|
| 57 |
+
# ๋ชจ๋ธ ์ ์
|
| 58 |
+
# ===============================
|
| 59 |
+
class SwiGLU(nn.Module):
|
| 60 |
+
def __init__(self, d_model):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.W = nn.Linear(d_model, 3500)
|
| 63 |
+
self.W1 = nn.Linear(1750, d_model)
|
| 64 |
+
def forward(self, x):
|
| 65 |
+
x = self.W(x.float())
|
| 66 |
+
a,b = x.chunk(2, dim=-1)
|
| 67 |
+
return self.W1(F.silu(a)*b).to(x.dtype)
|
| 68 |
+
|
| 69 |
+
class SparseCausalAttention(nn.Module):
|
| 70 |
+
def __init__(self, num_heads, head_dim, window_size=8):
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.num_heads = num_heads
|
| 73 |
+
self.head_dim = head_dim
|
| 74 |
+
self.window_size = window_size
|
| 75 |
+
self.q = nn.Linear(head_dim*num_heads, num_heads*head_dim)
|
| 76 |
+
self.k = nn.Linear(head_dim*num_heads, num_heads*head_dim)
|
| 77 |
+
self.v = nn.Linear(head_dim*num_heads, num_heads*head_dim)
|
| 78 |
+
self.out = nn.Linear(num_heads*head_dim, head_dim*num_heads)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
B,L,D = x.shape
|
| 82 |
+
q = self.q(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
|
| 83 |
+
k = self.k(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
|
| 84 |
+
v = self.v(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
|
| 85 |
+
q = q / (self.head_dim ** 0.5)
|
| 86 |
+
|
| 87 |
+
attn_scores = torch.matmul(q, k.transpose(-2,-1))
|
| 88 |
+
mask = torch.tril(torch.ones(L,L, device=x.device))
|
| 89 |
+
band_mask = torch.triu(mask, -self.window_size)
|
| 90 |
+
attn_scores = attn_scores.masked_fill(band_mask==0, float('-inf'))
|
| 91 |
+
attn_probs = F.softmax(attn_scores, dim=-1)
|
| 92 |
+
out = torch.matmul(attn_probs, v)
|
| 93 |
+
out = out.transpose(1,2).reshape(B,L,D)
|
| 94 |
+
return self.out(out)
|
| 95 |
+
|
| 96 |
+
class Lo(nn.Module):
|
| 97 |
+
def __init__(self,d_model):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.d = nn.Linear(d_model,64)
|
| 100 |
+
self.w = nn.Linear(64,d_model)
|
| 101 |
+
self.norm = nn.LayerNorm(d_model)
|
| 102 |
+
def forward(self,x):
|
| 103 |
+
return self.norm(self.w(F.silu(self.d(x))) + x)
|
| 104 |
+
|
| 105 |
+
class Block(nn.Module):
|
| 106 |
+
def __init__(self,d_model):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.attn = SparseCausalAttention(num_heads=2, head_dim=64)
|
| 109 |
+
self.glu = SwiGLU(d_model)
|
| 110 |
+
self.norm = nn.LayerNorm(d_model)
|
| 111 |
+
self.lo = Lo(d_model)
|
| 112 |
+
def forward(self,x):
|
| 113 |
+
x = self.attn(x)
|
| 114 |
+
x = self.norm(self.glu(x)+x)
|
| 115 |
+
x = self.lo(x)
|
| 116 |
+
return x
|
| 117 |
+
|
| 118 |
+
class ReLM(nn.Module):
|
| 119 |
+
def __init__(self,vocab_size,max_seq_len,d_model,n_layers):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.token_embedding = nn.Embedding(vocab_size,d_model)
|
| 122 |
+
self.pos_embedding = nn.Embedding(max_seq_len,d_model)
|
| 123 |
+
self.blocks = nn.ModuleList([Block(d_model) for _ in range(n_layers)])
|
| 124 |
+
self.ln_f = nn.LayerNorm(d_model)
|
| 125 |
+
self.d_model = d_model
|
| 126 |
+
|
| 127 |
+
def forward(self,x):
|
| 128 |
+
B,L = x.shape
|
| 129 |
+
positions = torch.arange(L,device=x.device).unsqueeze(0)
|
| 130 |
+
x = self.token_embedding(x) + self.pos_embedding(positions)
|
| 131 |
+
for block in self.blocks:
|
| 132 |
+
x = block(x)
|
| 133 |
+
x = self.ln_f(x)
|
| 134 |
+
logits = x @ self.token_embedding.weight.T
|
| 135 |
+
return logits
|
| 136 |
+
|
| 137 |
+
# ===============================
|
| 138 |
+
# ํ์ต
|
| 139 |
+
# ===============================
|
| 140 |
+
model = ReLM(vocab_size, max_len, 128, 2).to(device)
|
| 141 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
|
| 142 |
+
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
|
| 143 |
+
loss_fn = nn.CrossEntropyLoss(ignore_index=pad_id)
|
| 144 |
+
|
| 145 |
+
epochs = 1
|
| 146 |
+
for epoch in range(epochs):
|
| 147 |
+
model.train()
|
| 148 |
+
total_loss = 0
|
| 149 |
+
for step,(x,y) in enumerate(dataloader):
|
| 150 |
+
x,y = x.to(device), y.to(device)
|
| 151 |
+
optimizer.zero_grad()
|
| 152 |
+
logits = model(x)
|
| 153 |
+
loss = loss_fn(logits.view(-1,vocab_size), y.view(-1))
|
| 154 |
+
loss.backward()
|
| 155 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
|
| 156 |
+
optimizer.step()
|
| 157 |
+
total_loss += loss.item()
|
| 158 |
+
if step % 100 == 0:
|
| 159 |
+
print(f"Epoch {epoch+1}, Step {step}, Loss: {loss.item():.4f}")
|
| 160 |
+
scheduler.step()
|
| 161 |
+
print(f"Epoch {epoch+1} ์๋ฃ, ํ๊ท Loss: {total_loss/len(dataloader):.4f}")
|
| 162 |
+
|
| 163 |
+
torch.save(model.state_dict(), "relm_model.pth")
|
| 164 |
+
print("๋ชจ๋ธ ์ ์ฅ ์๋ฃ!")
|
| 165 |
+
|
| 166 |
+
# ===============================
|
| 167 |
+
# Top-p ์ํ๋ง ์์ฑ
|
| 168 |
+
# ===============================
|
| 169 |
+
def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.6, min_len=20):
|
| 170 |
+
model.eval()
|
| 171 |
+
model_input = text_to_ids(f"<start> {prompt}")
|
| 172 |
+
model_input = model_input[:max_len]
|
| 173 |
+
generated = list(model_input)
|
| 174 |
+
with torch.no_grad():
|
| 175 |
+
for step in range(max_gen):
|
| 176 |
+
input_seq = generated[-max_len:] if len(generated)>max_len else generated
|
| 177 |
+
input_tensor = torch.tensor([input_seq + [pad_id]*(max_len-len(input_seq))], device=device)
|
| 178 |
+
logits = model(input_tensor)
|
| 179 |
+
next_logits = logits[0,len(input_seq)-1]
|
| 180 |
+
next_logits[end_id] -= 5.0
|
| 181 |
+
next_logits[pad_id] -= 10.0
|
| 182 |
+
probs = F.softmax(next_logits/temperature, dim=-1).cpu().numpy()
|
| 183 |
+
sorted_indices = np.argsort(probs)[::-1]
|
| 184 |
+
sorted_probs = probs[sorted_indices]
|
| 185 |
+
cumulative_probs = np.cumsum(sorted_probs)
|
| 186 |
+
cutoff = np.searchsorted(cumulative_probs,p)
|
| 187 |
+
top_indices = sorted_indices[:cutoff+1]
|
| 188 |
+
top_probs = sorted_probs[:cutoff+1]
|
| 189 |
+
top_probs /= top_probs.sum()
|
| 190 |
+
next_token = np.random.choice(top_indices, p=top_probs)
|
| 191 |
+
if next_token==end_id and len(generated)>=min_len:
|
| 192 |
+
break
|
| 193 |
+
generated.append(int(next_token))
|
| 194 |
+
return ids_to_text(generated)
|
| 195 |
+
|
| 196 |
+
# ํ
์คํธ
|
| 197 |
+
print("\n===== ์์ฑ ๊ฒฐ๊ณผ =====")
|
| 198 |
+
print(generate_text_topp(model, "์ง๋ 2๋
๋์ ์ถ์ฐ์ฐ์ด ๊ตญ๊ฐ๊ฐ ํ์ํ ์ฐ๊ตฌ๋ฅผ", p=0.9))
|