!pip install sentencepiece import sentencepiece as spm import os, json, numpy as np, tensorflow as tf from tensorflow.keras import layers, Model import requests from tensorflow import keras from tensorflow.keras import layers import tensorflow.keras.backend as K print('1') tf.get_logger().setLevel("ERROR") SEED = 42 tf.random.set_seed(SEED) np.random.seed(SEED) # TPU 초기화 try: resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) print("✅ TPU 초기화 완료:", resolver.cluster_spec().as_dict()) on_tpu = True except Exception as e: print("⚠️ TPU 미사용, GPU/CPU로 진행:", e) strategy = tf.distribute.get_strategy() on_tpu = False # Mixed precision from tensorflow.keras import mixed_precision policy = mixed_precision.Policy("mixed_bfloat16" if on_tpu else "float32") mixed_precision.set_global_policy(policy) print("✅ Mixed precision:", policy) # ======================= # 1) 파일 다운로드 # ======================= def download_file(url, save_path): r = requests.get(url, stream=True) r.raise_for_status() with open(save_path, "wb") as f: for chunk in r.iter_content(8192*2): f.write(chunk) print(f"✅ {save_path} 저장됨") DATA_PATH = "corpus.txt" TOKENIZER_PATH = "ko_unigram.model" if not os.path.exists(DATA_PATH): download_file( "https://huggingface.co/datasets/Yuchan5386/Prototype/resolve/main/corpus_ko.txt?download=true", DATA_PATH ) if not os.path.exists(TOKENIZER_PATH): download_file( "https://huggingface.co/Yuchan5386/Respiso/resolve/main/bpe.model?download=true", TOKENIZER_PATH ) sp = spm.SentencePieceProcessor(TOKENIZER_PATH) pad_id = sp.piece_to_id("") if sp.piece_to_id("") != -1 else 0 start_id = sp.piece_to_id("") sep_id = sp.piece_to_id("") end_id = sp.piece_to_id("") unk_id = sp.piece_to_id("") vocab_size = sp.get_piece_size() print(f"✅ Vocabulary size: {vocab_size}") max_len = 512 batch_size = 256 def text_to_ids(text): return sp.encode(text, out_type=int) def ids_to_text(ids): return sp.decode(ids) def txt_stream(file_path): with open(file_path, "r", encoding="utf-8") as f: for line in f: text = line.strip() if not text: continue ids = text_to_ids(text) ids = ids[:max_len - 1] # 마지막에 넣기 위해 -1 full_input = ids + [end_id] pad_len = max_len - len(full_input) full_input += [pad_id] * pad_len # target = next-token shifted sequence target = full_input[1:] + [pad_id] yield ( tf.convert_to_tensor(full_input, dtype=tf.int32), tf.convert_to_tensor(target, dtype=tf.int32) ) dataset = tf.data.Dataset.from_generator( lambda: txt_stream(DATA_PATH), output_signature=( tf.TensorSpec(shape=(max_len,), dtype=tf.int32), tf.TensorSpec(shape=(max_len,), dtype=tf.int32), ) ) dataset = dataset.shuffle(2000, seed=SEED).batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE) with strategy.scope(): dist_dataset = strategy.experimental_distribute_dataset(dataset) class Lo(layers.Layer): def __init__(self, d_model): super().__init__() self.proj = layers.Dense(d_model, use_bias=True, dtype='float32') self.p = layers.Dense(128, use_bias=True, dtype='float32') self._out_dtype = 'float32' def call(self, x): x_f32 = tf.cast(x, tf.float32) x = self.proj(x_f32) x = tf.nn.gelu(x) x = self.p(x) return tf.cast(x, self._out_dtype) class SwiGLU(layers.Layer): def __init__(self, d_model): super().__init__() self.W = layers.Dense(3500, dtype='float32') self.W1 = layers.Dense(d_model, dtype='float32') def call(self, x): x = tf.cast(x, tf.float32) x = self.W(x) a, b = tf.split(x, 2, axis=-1) out = self.W1(tf.nn.silu(a) * b) return tf.cast(out, x.dtype) class LoU(layers.Layer): def __init__(self, d_model, clip_value=5.0, eps=1e-6): super().__init__() self.d_model = d_model self.clip_value = float(clip_value) self.eps = float(eps) self.Q = layers.Dense(d_model, dtype='float32') self.K = layers.Dense(d_model, dtype='float32') self.V = layers.Dense(d_model, dtype='float32') self.Qr = Lo(d_model) self.Kr = Lo(d_model) self.Vr = Lo(d_model) self.proj = layers.Dense(d_model, use_bias=True, dtype='float32') self.O = layers.Dense(d_model, dtype='float32') self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32') self.norm1 = layers.LayerNormalization(epsilon=1e-5, dtype='float32') self.alpha_linear = layers.Dense(1, activation='sigmoid', dtype='float32') def _ema_over_time(self, score, alpha_dynamic): seq = tf.transpose(score, perm=[1, 0, 2]) alpha_seq = tf.transpose(alpha_dynamic, perm=[1, 0, 2]) def step(prev_ema, inputs): x_t, alpha_t = inputs new = alpha_t * x_t + (1.0 - alpha_t) * prev_ema return new init = seq[0] first_alpha = alpha_seq[0] remaining_seq = seq[1:] remaining_alpha = alpha_seq[1:] elems = (remaining_seq, remaining_alpha) ema_seq = tf.scan(fn=step, elems=elems, initializer=init) ema_seq = tf.concat([tf.expand_dims(init, 0), ema_seq], axis=0) ema = tf.transpose(ema_seq, perm=[1, 0, 2]) return ema def call(self, x): x_f32 = tf.cast(x, tf.float32) residual = x_f32 x_f32 = self.norm1(x) q = self.Q(x_f32) k = self.K(x_f32) V = self.V(x_f32) q = self.Qr(q) k = self.Kr(k) V = self.Vr(V) # 기존 코드: # g_q = tf.nn.sigmoid(q) # g_k = tf.nn.sigmoid(k) g_q = (tf.nn.tanh(q) + 1.0) / 2.0 g_k = (tf.nn.tanh(k) + 1.0) / 2.0 score = g_q * g_k alpha_dynamic = self.alpha_linear(x_f32) score_ema = self._ema_over_time(score, alpha_dynamic) mean_last = tf.reduce_mean(score_ema, axis=-1, keepdims=True) denom = tf.maximum(mean_last, self.eps) score_norm = score_ema / denom score_clipped = tf.clip_by_value(score_norm, -self.clip_value, self.clip_value) x_comb = score_clipped * V out = self.proj(x_comb) out = self.norm(out + residual) return tf.cast(out, x.dtype) class Block(layers.Layer): def __init__(self, d_model): super().__init__() self.lou = LoU(d_model) self.glu = SwiGLU(d_model) self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32') def call(self, x): x = self.lou(x) x = self.norm(self.glu(x)) + x return x class ReLM(tf.keras.Model): def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1): super().__init__() self.token_embedding = layers.Embedding(vocab_size, d_model) self.pos_embedding = layers.Embedding(max_seq_len, d_model) self.blocks = [Block(d_model) for _ in range(n_layers)] self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype="float32") def call(self, x, training=False): batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1] positions = tf.range(seq_len)[tf.newaxis, :] x = self.token_embedding(x) + self.pos_embedding(positions) for block in self.blocks: x = block(x) x = self.ln_f(x) embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype) logits = tf.matmul(x, embedding_matrix, transpose_b=True) return tf.cast(logits, tf.float32) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') def masked_loss(y_true, y_pred): loss = loss_fn(y_true, y_pred) mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32) masked_loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) return masked_loss def masked_perplexity(y_true, y_pred): loss = loss_fn(y_true, y_pred) mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32) avg_loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) return tf.exp(tf.minimum(avg_loss, 10.0)) # 수치 안정성 확보 def create_lr_schedule(initial_lr=5e-5, decay_steps=10000, decay_rate=0.9): return tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate, staircase=False ) # 모델 생성 model = ReLM( vocab_size=vocab_size, max_seq_len=max_len, d_model=700, n_layers=2 ) # 옵티마이저 설정 optimizer = tf.keras.optimizers.Adam( learning_rate=create_lr_schedule(), beta_1=0.9, beta_2=0.95, epsilon=1e-8, clipnorm=1.0 ) # 모델 컴파일 model.compile( optimizer=optimizer, loss=masked_loss, metrics=[ masked_perplexity ] ) # 더미 인풋으로 모델 초기화 dummy_input = np.zeros((1, max_len), dtype=np.int32) model(dummy_input) model.summary() history = model.fit(dataset, epochs=1, verbose=1) # 가중치 저장 model.save_weights("model.weights.h5") print("모델 가중치 저장 완료!") def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.8, min_len=20): model_input = text_to_ids(f" {prompt}") model_input = model_input[:max_len] generated = list(model_input) for step in range(max_gen): if len(generated) > max_len: input_seq = generated[-max_len:] else: input_seq = generated input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id) input_tensor = tf.convert_to_tensor([input_padded]) logits = model(input_tensor, training=False) next_token_logits = logits[0, len(input_seq) - 1].numpy() next_token_logits[end_id] -= 5.0 next_token_logits[pad_id] -= 10.0 probs = tf.nn.softmax(next_token_logits / temperature).numpy() sorted_indices = np.argsort(probs)[::-1] sorted_probs = probs[sorted_indices] cumulative_probs = np.cumsum(sorted_probs) cutoff = np.searchsorted(cumulative_probs, p) top_indices = sorted_indices[:cutoff + 1] top_probs = sorted_probs[:cutoff + 1] top_probs /= np.sum(top_probs) next_token_id = np.random.choice(top_indices, p=top_probs) if next_token_id == end_id and len(generated) >= min_len: break generated.append(int(next_token_id)) return ids_to_text(generated) print("\n\n===== 생성 결과 =====") print(generate_text_topp(model, "지난 2년 동안 출연연이 국가가 필요한 연구를", p=0.9))