!pip install sentencepiece import sentencepiece as spm import os, json, numpy as np, tensorflow as tf from tensorflow.keras import layers, Model import requests from tensorflow import keras from tensorflow.keras import layers import tensorflow.keras.backend as K # =============================== from tensorflow.keras import mixed_precision policy = mixed_precision.Policy('mixed_float16') # fp16 mixed_precision.set_global_policy(policy) print('1') tf.get_logger().setLevel("ERROR") SEED = 42 tf.random.set_seed(SEED) np.random.seed(SEED) # TPU 초기화 try: resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) print("✅ TPU 초기화 완료:", resolver.cluster_spec().as_dict()) on_tpu = True except Exception as e: print("⚠️ TPU 미사용, GPU/CPU로 진행:", e) strategy = tf.distribute.get_strategy() on_tpu = False # Mixed precision from tensorflow.keras import mixed_precision policy = mixed_precision.Policy("mixed_bfloat16" if on_tpu else "float32") mixed_precision.set_global_policy(policy) print("✅ Mixed precision:", policy) # ======================= # 1) 파일 다운로드 # ======================= def download_file(url, save_path): r = requests.get(url, stream=True) r.raise_for_status() with open(save_path, "wb") as f: for chunk in r.iter_content(8192*2): f.write(chunk) print(f"✅ {save_path} 저장됨") DATA_PATH = "corpus.txt" TOKENIZER_PATH = "ko_unigram.model" if not os.path.exists(DATA_PATH): download_file( "https://huggingface.co/datasets/OpenLab-NLP/corpus-ko-22m/resolve/main/shuffled_corpus.txt?download=true", DATA_PATH ) if not os.path.exists(TOKENIZER_PATH): download_file( "https://huggingface.co/Yuchan5386/inlam-100m/resolve/main/ko_unigram.model?download=true", TOKENIZER_PATH ) sp = spm.SentencePieceProcessor(TOKENIZER_PATH) pad_id = sp.piece_to_id("") if sp.piece_to_id("") != -1 else 0 start_id = sp.piece_to_id("") sep_id = sp.piece_to_id("") end_id = sp.piece_to_id("") unk_id = sp.piece_to_id("") vocab_size = sp.get_piece_size() print(f"✅ Vocabulary size: {vocab_size}") max_len = 128 batch_size = 96 def text_to_ids(text): return sp.encode(text, out_type=int) def ids_to_text(ids): return sp.decode(ids) def txt_stream(file_path): with open(file_path, "r", encoding="utf-8") as f: for line in f: text = line.strip() if not text: continue ids = text_to_ids(text) ids = ids[:max_len - 1] # 마지막에 넣기 위해 -1 full_input = ids + [end_id] pad_len = max_len - len(full_input) full_input += [pad_id] * pad_len # target = next-token shifted sequence target = full_input[1:] + [pad_id] yield ( tf.convert_to_tensor(full_input, dtype=tf.int32), tf.convert_to_tensor(target, dtype=tf.int32) ) steps_per_epoch = 23119910 // batch_size LIMIT = 23119910 dataset = tf.data.Dataset.from_generator( lambda: txt_stream(DATA_PATH), output_signature=( tf.TensorSpec(shape=(max_len,), dtype=tf.int32), tf.TensorSpec(shape=(max_len,), dtype=tf.int32), ) ) dataset = dataset.take(LIMIT).shuffle(2000, seed=SEED).batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE) with strategy.scope(): dist_dataset = strategy.experimental_distribute_dataset(dataset) class SwiGLU(layers.Layer): def __init__(self, d_model, d_ff): super().__init__() self.proj = layers.Dense(d_ff) self.out = layers.Dense(d_model) def call(self, x): x_proj = self.proj(x) x_val, x_gate = tf.split(x_proj, 2, axis=-1) return self.out(x_val * tf.nn.silu(x_gate)) class Lo(layers.Layer): def __init__(self, d_model): super().__init__() self.d = layers.Dense(64, activation='silu', dtype='float16') # fp16 연산 self.w = layers.Dense(d_model, dtype='float16') # fp16 연산 self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32') # fp32 def call(self, x): p = self.d(x) p = self.w(p) p = self.norm(p) # fp32 return tf.cast(p, x.dtype) + x # 다시 fp16로 맞춰서 Add class Block(layers.Layer): def __init__(self, d_model): super().__init__() self.mha = layers.MultiHeadAttention(8, 384//8) self.glu = SwiGLU(d_model, 1048) self.lo = Lo(d_model) def call(self, x): x = self.mha(x) x = self.glu(x) x = self.lo(x) return x class LaSLM(tf.keras.Model): def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1): super().__init__() self.token_embedding = layers.Embedding(vocab_size, d_model, dtype=policy.compute_dtype) self.pos_embedding = layers.Embedding(max_seq_len, d_model, dtype=policy.compute_dtype) self.blocks = [Block(d_model) for _ in range(n_layers)] self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype='float32') # ln_f는 fp32 def call(self, x, training=False): batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1] positions = tf.range(seq_len)[tf.newaxis, :] x = self.token_embedding(x) + self.pos_embedding(positions) for block in self.blocks: x = block(x) x = self.ln_f(x) embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype) logits = tf.matmul(x, embedding_matrix, transpose_b=True) return tf.cast(logits, tf.float32) # loss 계산을 위해 fp32로 변환 def smoothed_loss_keras(y_true, y_pred, eps=0.1): y_true = tf.cast(y_true, tf.int32) mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32) vocab = tf.shape(y_pred)[-1] y_true_oh = tf.one_hot(y_true, depth=vocab, dtype=tf.float32) y_true_ls = (1.0 - eps) * y_true_oh + eps / tf.cast(vocab, tf.float32) log_probs = tf.nn.log_softmax(y_pred, axis=-1) per_tok = -tf.reduce_sum(y_true_ls * log_probs, axis=-1) per_tok = per_tok * mask return tf.reduce_sum(per_tok) / (tf.reduce_sum(mask) + 1e-8) with strategy.scope(): model = LaSLM(vocab_size=vocab_size, max_seq_len=max_len, d_model=384, n_layers=3) dummy_input = tf.zeros((batch_size, max_len), dtype=tf.int32) _ = model(dummy_input, training=False) model.summary() optimizer = tf.keras.optimizers.Adam(1e-4, beta_1=0.9, beta_2=0.95, epsilon=1e-8, clipnorm=1.0) model.compile(optimizer=optimizer, loss=smoothed_loss_keras) # 학습 history = model.fit(dist_dataset, epochs=1, steps_per_epoch=steps_per_epoch, verbose=1) model.save_weights("tf_model.weights.h5") print("✅ 모델 가중치 저장 완료!") def generate_text_topp(model, prompt, max_len=500, max_gen=500, p=0.9, temperature=0.8, min_len=20): model_input = text_to_ids(f" {prompt}") model_input = model_input[:max_len] generated = list(model_input) for step in range(max_gen): if len(generated) > max_len: input_seq = generated[-max_len:] else: input_seq = generated input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id) input_tensor = tf.convert_to_tensor([input_padded]) logits = model(input_tensor, training=False) next_token_logits = logits[0, len(input_seq) - 1].numpy() next_token_logits[end_id] -= 5.0 next_token_logits[pad_id] -= 10.0 probs = tf.nn.softmax(next_token_logits / temperature).numpy() sorted_indices = np.argsort(probs)[::-1] sorted_probs = probs[sorted_indices] cumulative_probs = np.cumsum(sorted_probs) cutoff = np.searchsorted(cumulative_probs, p) top_indices = sorted_indices[:cutoff + 1] top_probs = sorted_probs[:cutoff + 1] top_probs /= np.sum(top_probs) next_token_id = np.random.choice(top_indices, p=top_probs) if next_token_id == end_id and len(generated) >= min_len: break generated.append(int(next_token_id)) return ids_to_text(generated) print("\n\n===== 생성 결과 =====") print(generate_text_topp(model, "지난 2년 동안 출연연이 국가가 필요한 연구를", p=0.9))