Upload CodeAct fine-tuned model
Browse files- 0000100_adapters.safetensors +3 -0
- 0000200_adapters.safetensors +3 -0
- 0000300_adapters.safetensors +3 -0
- 0000400_adapters.safetensors +3 -0
- 0000500_adapters.safetensors +3 -0
- README.md +104 -0
- adapter_config.json +40 -0
- adapters.safetensors +3 -0
- interactive_universal.py +342 -0
0000100_adapters.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63df8ee7078f69436fb178c94ed01c90246a89d965ce20d6d2bcefab04e63145
|
| 3 |
+
size 26631752
|
0000200_adapters.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2b574d8ce4eb379916a840a4e4bd1294e4102acefaffbc7abf5615eb32153c5
|
| 3 |
+
size 26631752
|
0000300_adapters.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:264639b527b0f185c2b94f3445854b0cdbdfcb2e951b2f7e4da4566b790c491b
|
| 3 |
+
size 26631752
|
0000400_adapters.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:466e67a31b92b50a0034f72653021635d7c33d16ce357c69e7cbc028c74689aa
|
| 3 |
+
size 26631752
|
0000500_adapters.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac831fc4e337596f97dbd44bf17bbcd49e61ffa48f1bef3bccfa3c2b083197b8
|
| 3 |
+
size 26631752
|
README.md
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- code
|
| 7 |
+
- codeact
|
| 8 |
+
- python
|
| 9 |
+
- mlx
|
| 10 |
+
- lora
|
| 11 |
+
base_model: Qwen/Qwen2.5-3B
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# CodeAct Fine-tuned Qwen2.5-3B
|
| 16 |
+
|
| 17 |
+
A fine-tuned version of Qwen2.5-3B for code generation with self-evaluation feedback.
|
| 18 |
+
|
| 19 |
+
## Model Description
|
| 20 |
+
|
| 21 |
+
This model was fine-tuned using the CodeAct approach with:
|
| 22 |
+
- **Base Model:** Qwen/Qwen2.5-3B
|
| 23 |
+
- **Training Method:** LoRA (Low-Rank Adaptation)
|
| 24 |
+
- **Training Data:** 100 curated Python programming examples
|
| 25 |
+
- **Categories:** Math, Strings, Lists, Algorithms, Data Structures
|
| 26 |
+
|
| 27 |
+
## Usage
|
| 28 |
+
|
| 29 |
+
### With MLX (Apple Silicon)
|
| 30 |
+
```python
|
| 31 |
+
from mlx_lm import load, generate
|
| 32 |
+
|
| 33 |
+
model, tokenizer = load("Phoenix21/codeact-qwen2.5-3b")
|
| 34 |
+
# Or with adapter:
|
| 35 |
+
# model, tokenizer = load("Qwen/Qwen2.5-3B", adapter_path="Phoenix21/codeact-qwen2.5-3b")
|
| 36 |
+
|
| 37 |
+
response = generate(model, tokenizer, prompt="Calculate factorial of 5", max_tokens=200)
|
| 38 |
+
print(response)
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### With PyTorch (CUDA/CPU)
|
| 42 |
+
```python
|
| 43 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 44 |
+
from peft import PeftModel
|
| 45 |
+
|
| 46 |
+
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-3B", trust_remote_code=True)
|
| 47 |
+
model = PeftModel.from_pretrained(base_model, "Phoenix21/codeact-qwen2.5-3b")
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-3B", trust_remote_code=True)
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### Interactive Demo
|
| 52 |
+
```bash
|
| 53 |
+
# Auto-detect backend (MLX/CUDA/CPU)
|
| 54 |
+
python interactive_universal.py
|
| 55 |
+
|
| 56 |
+
# Force specific backend
|
| 57 |
+
python interactive_universal.py --backend cuda
|
| 58 |
+
python interactive_universal.py --backend mlx
|
| 59 |
+
python interactive_universal.py --backend cpu
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Training Details
|
| 63 |
+
|
| 64 |
+
- **Iterations:** 500
|
| 65 |
+
- **Batch Size:** 1
|
| 66 |
+
- **LoRA Layers:** 16
|
| 67 |
+
- **Learning Rate:** 1e-5
|
| 68 |
+
- **Platform:** Apple M3 (MLX)
|
| 69 |
+
|
| 70 |
+
## Response Format
|
| 71 |
+
|
| 72 |
+
The model uses structured tags:
|
| 73 |
+
- `<thought>reasoning</thought>` - Chain of thought
|
| 74 |
+
- `<execute>code</execute>` - Python code to execute
|
| 75 |
+
- `<solution>answer</solution>` - Final answer
|
| 76 |
+
- `<feedback>assessment</feedback>` - Self-evaluation
|
| 77 |
+
|
| 78 |
+
## Example
|
| 79 |
+
|
| 80 |
+
**Input:** "Calculate the sum of squares from 1 to 10"
|
| 81 |
+
|
| 82 |
+
**Output:**
|
| 83 |
+
```
|
| 84 |
+
<thought>Sum of squares formula: n(n+1)(2n+1)/6</thought>
|
| 85 |
+
|
| 86 |
+
<execute>
|
| 87 |
+
n = 10
|
| 88 |
+
result = n * (n + 1) * (2 * n + 1) // 6
|
| 89 |
+
print(result)
|
| 90 |
+
</execute>
|
| 91 |
+
|
| 92 |
+
<solution>Sum of squares from 1 to 10 is 385</solution>
|
| 93 |
+
|
| 94 |
+
<feedback>
|
| 95 |
+
score: 10
|
| 96 |
+
correctness: correct
|
| 97 |
+
efficiency: excellent
|
| 98 |
+
explanation: Used O(1) formula instead of O(n) loop
|
| 99 |
+
</feedback>
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## License
|
| 103 |
+
|
| 104 |
+
Apache 2.0
|
adapter_config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"adapter_path": "./models/codeact-mlx-qwen2.5-3b",
|
| 3 |
+
"batch_size": 1,
|
| 4 |
+
"config": null,
|
| 5 |
+
"data": "data/mlx_train",
|
| 6 |
+
"fine_tune_type": "lora",
|
| 7 |
+
"grad_accumulation_steps": 1,
|
| 8 |
+
"grad_checkpoint": false,
|
| 9 |
+
"iters": 500,
|
| 10 |
+
"learning_rate": 1e-05,
|
| 11 |
+
"lora_parameters": {
|
| 12 |
+
"rank": 8,
|
| 13 |
+
"dropout": 0.0,
|
| 14 |
+
"scale": 20.0
|
| 15 |
+
},
|
| 16 |
+
"lr_schedule": null,
|
| 17 |
+
"mask_prompt": false,
|
| 18 |
+
"max_seq_length": 2048,
|
| 19 |
+
"model": "Qwen/Qwen2.5-3B",
|
| 20 |
+
"num_layers": 16,
|
| 21 |
+
"optimizer": "adam",
|
| 22 |
+
"optimizer_config": {
|
| 23 |
+
"adam": {},
|
| 24 |
+
"adamw": {},
|
| 25 |
+
"muon": {},
|
| 26 |
+
"sgd": {},
|
| 27 |
+
"adafactor": {}
|
| 28 |
+
},
|
| 29 |
+
"project_name": null,
|
| 30 |
+
"report_to": null,
|
| 31 |
+
"resume_adapter_file": null,
|
| 32 |
+
"save_every": 100,
|
| 33 |
+
"seed": 0,
|
| 34 |
+
"steps_per_eval": 200,
|
| 35 |
+
"steps_per_report": 10,
|
| 36 |
+
"test": false,
|
| 37 |
+
"test_batches": 500,
|
| 38 |
+
"train": true,
|
| 39 |
+
"val_batches": 25
|
| 40 |
+
}
|
adapters.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac831fc4e337596f97dbd44bf17bbcd49e61ffa48f1bef3bccfa3c2b083197b8
|
| 3 |
+
size 26631752
|
interactive_universal.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Universal CodeAct Interactive Demo
|
| 3 |
+
Supports: CUDA (NVIDIA), MLX (Apple Silicon), CPU
|
| 4 |
+
Auto-detects best available backend
|
| 5 |
+
"""
|
| 6 |
+
import re
|
| 7 |
+
import sys
|
| 8 |
+
import os
|
| 9 |
+
import argparse
|
| 10 |
+
from io import StringIO
|
| 11 |
+
|
| 12 |
+
# ============= BACKEND DETECTION =============
|
| 13 |
+
def detect_backend():
|
| 14 |
+
"""Auto-detect the best available backend"""
|
| 15 |
+
# Check for MLX (Apple Silicon)
|
| 16 |
+
try:
|
| 17 |
+
import mlx.core as mx
|
| 18 |
+
return "mlx"
|
| 19 |
+
except ImportError:
|
| 20 |
+
pass
|
| 21 |
+
|
| 22 |
+
# Check for CUDA
|
| 23 |
+
try:
|
| 24 |
+
import torch
|
| 25 |
+
if torch.cuda.is_available():
|
| 26 |
+
return "cuda"
|
| 27 |
+
except ImportError:
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
# Check for MPS (Apple Metal via PyTorch)
|
| 31 |
+
try:
|
| 32 |
+
import torch
|
| 33 |
+
if torch.backends.mps.is_available():
|
| 34 |
+
return "mps"
|
| 35 |
+
except:
|
| 36 |
+
pass
|
| 37 |
+
|
| 38 |
+
# Fallback to CPU
|
| 39 |
+
return "cpu"
|
| 40 |
+
|
| 41 |
+
# ============= MLX BACKEND =============
|
| 42 |
+
class MLXBackend:
|
| 43 |
+
def __init__(self, model_name, adapter_path=None):
|
| 44 |
+
from mlx_lm import load, generate
|
| 45 |
+
self.generate_fn = generate
|
| 46 |
+
|
| 47 |
+
if adapter_path and os.path.exists(adapter_path):
|
| 48 |
+
print(f"Loading MLX model with adapter: {adapter_path}")
|
| 49 |
+
self.model, self.tokenizer = load(model_name, adapter_path=adapter_path)
|
| 50 |
+
else:
|
| 51 |
+
print(f"Loading MLX model: {model_name}")
|
| 52 |
+
self.model, self.tokenizer = load(model_name)
|
| 53 |
+
|
| 54 |
+
def generate(self, prompt, max_tokens=400):
|
| 55 |
+
return self.generate_fn(
|
| 56 |
+
self.model,
|
| 57 |
+
self.tokenizer,
|
| 58 |
+
prompt=prompt,
|
| 59 |
+
max_tokens=max_tokens,
|
| 60 |
+
verbose=False
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# ============= PYTORCH BACKEND (CUDA/MPS/CPU) =============
|
| 64 |
+
class PyTorchBackend:
|
| 65 |
+
def __init__(self, model_name, device="auto", adapter_path=None):
|
| 66 |
+
import torch
|
| 67 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 68 |
+
|
| 69 |
+
# Determine device
|
| 70 |
+
if device == "auto":
|
| 71 |
+
if torch.cuda.is_available():
|
| 72 |
+
self.device = "cuda"
|
| 73 |
+
elif torch.backends.mps.is_available():
|
| 74 |
+
self.device = "mps"
|
| 75 |
+
else:
|
| 76 |
+
self.device = "cpu"
|
| 77 |
+
else:
|
| 78 |
+
self.device = device
|
| 79 |
+
|
| 80 |
+
print(f"Loading PyTorch model on {self.device}: {model_name}")
|
| 81 |
+
|
| 82 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 83 |
+
model_name,
|
| 84 |
+
trust_remote_code=True
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Load model with appropriate dtype
|
| 88 |
+
dtype = torch.float16 if self.device in ["cuda", "mps"] else torch.float32
|
| 89 |
+
|
| 90 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
torch_dtype=dtype,
|
| 93 |
+
device_map=self.device if self.device == "cuda" else None,
|
| 94 |
+
trust_remote_code=True,
|
| 95 |
+
low_cpu_mem_usage=True
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if self.device != "cuda":
|
| 99 |
+
self.model = self.model.to(self.device)
|
| 100 |
+
|
| 101 |
+
# Load LoRA adapter if available
|
| 102 |
+
if adapter_path and os.path.exists(adapter_path):
|
| 103 |
+
try:
|
| 104 |
+
from peft import PeftModel
|
| 105 |
+
print(f"Loading LoRA adapter: {adapter_path}")
|
| 106 |
+
self.model = PeftModel.from_pretrained(self.model, adapter_path)
|
| 107 |
+
except ImportError:
|
| 108 |
+
print("Warning: peft not installed, skipping adapter")
|
| 109 |
+
|
| 110 |
+
def generate(self, prompt, max_tokens=400):
|
| 111 |
+
import torch
|
| 112 |
+
|
| 113 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
| 114 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 115 |
+
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
outputs = self.model.generate(
|
| 118 |
+
**inputs,
|
| 119 |
+
max_new_tokens=max_tokens,
|
| 120 |
+
temperature=0.7,
|
| 121 |
+
do_sample=True,
|
| 122 |
+
top_p=0.95,
|
| 123 |
+
pad_token_id=self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
response = self.tokenizer.decode(
|
| 127 |
+
outputs[0][len(inputs['input_ids'][0]):],
|
| 128 |
+
skip_special_tokens=True
|
| 129 |
+
)
|
| 130 |
+
return response
|
| 131 |
+
|
| 132 |
+
# ============= CODE EXECUTION =============
|
| 133 |
+
def execute_code(code):
|
| 134 |
+
"""Execute Python code and capture output"""
|
| 135 |
+
stdout_buffer = StringIO()
|
| 136 |
+
stderr_buffer = StringIO()
|
| 137 |
+
old_stdout, old_stderr = sys.stdout, sys.stderr
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
sys.stdout = stdout_buffer
|
| 141 |
+
sys.stderr = stderr_buffer
|
| 142 |
+
namespace = {}
|
| 143 |
+
exec(code, namespace)
|
| 144 |
+
output = stdout_buffer.getvalue()
|
| 145 |
+
errors = stderr_buffer.getvalue()
|
| 146 |
+
return {"success": True, "output": output.strip() or None, "error": errors.strip() or None}
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return {"success": False, "output": None, "error": str(e)}
|
| 149 |
+
finally:
|
| 150 |
+
sys.stdout, sys.stderr = old_stdout, old_stderr
|
| 151 |
+
|
| 152 |
+
# ============= MAIN DEMO CLASS =============
|
| 153 |
+
class CodeActDemo:
|
| 154 |
+
def __init__(self, backend="auto", model_name=None, adapter_path=None):
|
| 155 |
+
# Default model
|
| 156 |
+
if model_name is None:
|
| 157 |
+
model_name = "Qwen/Qwen2.5-3B"
|
| 158 |
+
|
| 159 |
+
# Default adapter paths
|
| 160 |
+
if adapter_path is None:
|
| 161 |
+
adapter_path = "./models/codeact-mlx-qwen2.5-3b"
|
| 162 |
+
|
| 163 |
+
# Auto-detect or use specified backend
|
| 164 |
+
if backend == "auto":
|
| 165 |
+
backend = detect_backend()
|
| 166 |
+
|
| 167 |
+
print(f"\n{'='*60}")
|
| 168 |
+
print(f"CodeAct Interactive Demo")
|
| 169 |
+
print(f"Backend: {backend.upper()}")
|
| 170 |
+
print(f"{'='*60}\n")
|
| 171 |
+
|
| 172 |
+
self.backend_name = backend
|
| 173 |
+
|
| 174 |
+
# Initialize backend
|
| 175 |
+
if backend == "mlx":
|
| 176 |
+
self.backend = MLXBackend(model_name, adapter_path)
|
| 177 |
+
else:
|
| 178 |
+
self.backend = PyTorchBackend(model_name, device=backend, adapter_path=adapter_path)
|
| 179 |
+
|
| 180 |
+
self.tokenizer = self.backend.tokenizer if hasattr(self.backend, 'tokenizer') else None
|
| 181 |
+
self.conversation_history = []
|
| 182 |
+
|
| 183 |
+
self.system_prompt = """You are a helpful AI assistant that executes Python code.
|
| 184 |
+
Use these tags:
|
| 185 |
+
- <thought>reasoning</thought> for thinking
|
| 186 |
+
- <execute>code</execute> for code
|
| 187 |
+
- <solution>answer</solution> for final answer
|
| 188 |
+
- <feedback>assessment</feedback> for self-evaluation"""
|
| 189 |
+
|
| 190 |
+
print("Model loaded successfully!\n")
|
| 191 |
+
|
| 192 |
+
def parse_response(self, response):
|
| 193 |
+
"""Extract tags from response"""
|
| 194 |
+
parts = {'thought': None, 'execute': None, 'solution': None, 'feedback': None}
|
| 195 |
+
for tag in parts:
|
| 196 |
+
match = re.search(f'<{tag}>(.*?)</{tag}>', response, re.DOTALL)
|
| 197 |
+
if match:
|
| 198 |
+
parts[tag] = match.group(1).strip()
|
| 199 |
+
return parts
|
| 200 |
+
|
| 201 |
+
def build_prompt(self, user_input, execution_result=None):
|
| 202 |
+
"""Build prompt with conversation history"""
|
| 203 |
+
messages = [{"role": "system", "content": self.system_prompt}]
|
| 204 |
+
messages.extend(self.conversation_history)
|
| 205 |
+
|
| 206 |
+
if execution_result:
|
| 207 |
+
content = f"Previous execution result: {execution_result}\n\nUser: {user_input}"
|
| 208 |
+
else:
|
| 209 |
+
content = user_input
|
| 210 |
+
|
| 211 |
+
messages.append({"role": "user", "content": content})
|
| 212 |
+
|
| 213 |
+
# Apply chat template
|
| 214 |
+
if hasattr(self.backend, 'tokenizer') and hasattr(self.backend.tokenizer, 'apply_chat_template'):
|
| 215 |
+
return self.backend.tokenizer.apply_chat_template(
|
| 216 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 217 |
+
)
|
| 218 |
+
else:
|
| 219 |
+
return "\n".join([f"{m['role']}: {m['content']}" for m in messages]) + "\nassistant:"
|
| 220 |
+
|
| 221 |
+
def chat(self, user_input, execution_result=None):
|
| 222 |
+
"""Generate response"""
|
| 223 |
+
prompt = self.build_prompt(user_input, execution_result)
|
| 224 |
+
return self.backend.generate(prompt, max_tokens=400)
|
| 225 |
+
|
| 226 |
+
def run(self):
|
| 227 |
+
"""Run interactive loop"""
|
| 228 |
+
print("="*60)
|
| 229 |
+
print(f"Running on: {self.backend_name.upper()}")
|
| 230 |
+
print("="*60)
|
| 231 |
+
print("\nCommands:")
|
| 232 |
+
print(" - Type your question and press Enter")
|
| 233 |
+
print(" - 'clear' - Clear conversation history")
|
| 234 |
+
print(" - 'quit' - Exit")
|
| 235 |
+
print("="*60 + "\n")
|
| 236 |
+
|
| 237 |
+
last_execution_result = None
|
| 238 |
+
|
| 239 |
+
while True:
|
| 240 |
+
try:
|
| 241 |
+
user_input = input("\nYou: ").strip()
|
| 242 |
+
|
| 243 |
+
if not user_input:
|
| 244 |
+
continue
|
| 245 |
+
|
| 246 |
+
if user_input.lower() in ['quit', 'exit', 'q']:
|
| 247 |
+
print("\nGoodbye!")
|
| 248 |
+
break
|
| 249 |
+
|
| 250 |
+
if user_input.lower() == 'clear':
|
| 251 |
+
self.conversation_history = []
|
| 252 |
+
last_execution_result = None
|
| 253 |
+
print("Conversation cleared")
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
print("\n[Generating...]", end=" ", flush=True)
|
| 257 |
+
response = self.chat(user_input, last_execution_result)
|
| 258 |
+
print("Done!\n")
|
| 259 |
+
|
| 260 |
+
parts = self.parse_response(response)
|
| 261 |
+
|
| 262 |
+
if parts['thought']:
|
| 263 |
+
print(f"Thought:\n{parts['thought']}\n")
|
| 264 |
+
|
| 265 |
+
if parts['execute']:
|
| 266 |
+
print(f"Code:\n```python\n{parts['execute']}\n```\n")
|
| 267 |
+
print("Executing...\n")
|
| 268 |
+
|
| 269 |
+
result = execute_code(parts['execute'])
|
| 270 |
+
|
| 271 |
+
if result["success"]:
|
| 272 |
+
if result["output"]:
|
| 273 |
+
print(f"Output:\n{result['output']}")
|
| 274 |
+
last_execution_result = f"Output: {result['output']}"
|
| 275 |
+
|
| 276 |
+
print("\n" + "-"*40)
|
| 277 |
+
feedback = input("Is this correct? (y/n/skip): ").strip().lower()
|
| 278 |
+
|
| 279 |
+
if feedback == 'n':
|
| 280 |
+
print("\nMarked as incorrect")
|
| 281 |
+
last_execution_result += " [INCORRECT]"
|
| 282 |
+
elif feedback == 'y':
|
| 283 |
+
print("\nCorrect!")
|
| 284 |
+
last_execution_result = None
|
| 285 |
+
else:
|
| 286 |
+
last_execution_result = None
|
| 287 |
+
|
| 288 |
+
self.conversation_history.append({"role": "user", "content": user_input})
|
| 289 |
+
self.conversation_history.append({"role": "assistant", "content": response})
|
| 290 |
+
else:
|
| 291 |
+
print("Code executed (no output)")
|
| 292 |
+
last_execution_result = None
|
| 293 |
+
|
| 294 |
+
if result["error"]:
|
| 295 |
+
print(f"Warnings: {result['error']}")
|
| 296 |
+
else:
|
| 297 |
+
print(f"Error: {result['error']}")
|
| 298 |
+
last_execution_result = f"Error: {result['error']}"
|
| 299 |
+
|
| 300 |
+
if parts['solution']:
|
| 301 |
+
print(f"\nSolution:\n{parts['solution']}")
|
| 302 |
+
|
| 303 |
+
if parts['feedback']:
|
| 304 |
+
print(f"\nFeedback:\n{parts['feedback']}")
|
| 305 |
+
|
| 306 |
+
if not any(parts.values()):
|
| 307 |
+
print(f"Response:\n{response[:500]}")
|
| 308 |
+
|
| 309 |
+
# Limit history
|
| 310 |
+
if len(self.conversation_history) > 10:
|
| 311 |
+
self.conversation_history = self.conversation_history[-10:]
|
| 312 |
+
|
| 313 |
+
print("\n" + "="*60)
|
| 314 |
+
|
| 315 |
+
except KeyboardInterrupt:
|
| 316 |
+
print("\n\nInterrupted. Goodbye!")
|
| 317 |
+
break
|
| 318 |
+
except Exception as e:
|
| 319 |
+
print(f"\nError: {e}")
|
| 320 |
+
import traceback
|
| 321 |
+
traceback.print_exc()
|
| 322 |
+
|
| 323 |
+
def main():
|
| 324 |
+
parser = argparse.ArgumentParser(description="CodeAct Interactive Demo")
|
| 325 |
+
parser.add_argument("--backend", choices=["auto", "cuda", "mps", "mlx", "cpu"],
|
| 326 |
+
default="auto", help="Backend to use (default: auto)")
|
| 327 |
+
parser.add_argument("--model", type=str, default="Qwen/Qwen2.5-3B",
|
| 328 |
+
help="Model name or path")
|
| 329 |
+
parser.add_argument("--adapter", type=str, default=None,
|
| 330 |
+
help="Path to LoRA adapter")
|
| 331 |
+
|
| 332 |
+
args = parser.parse_args()
|
| 333 |
+
|
| 334 |
+
demo = CodeActDemo(
|
| 335 |
+
backend=args.backend,
|
| 336 |
+
model_name=args.model,
|
| 337 |
+
adapter_path=args.adapter
|
| 338 |
+
)
|
| 339 |
+
demo.run()
|
| 340 |
+
|
| 341 |
+
if __name__ == "__main__":
|
| 342 |
+
main()
|