Commit
Β·
67af3de
1
Parent(s):
b3bbb65
initial commit with LFS for GGUF model
Browse files- .gitattributes +1 -0
- README.md +233 -0
- cveparrot.gguf +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,236 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- security
|
| 7 |
+
- cve
|
| 8 |
+
- vulnerability
|
| 9 |
+
- t5
|
| 10 |
+
- text-generation
|
| 11 |
+
base_model: google-t5/t5-small
|
| 12 |
---
|
| 13 |
+
|
| 14 |
+
# CVEParrot π¦
|
| 15 |
+
|
| 16 |
+
CVEParrot is a Google T5 model fine-tuned on CVE (Common Vulnerabilities and Exposures) database to understand and generate security vulnerability information.
|
| 17 |
+
|
| 18 |
+
## Model Description
|
| 19 |
+
|
| 20 |
+
- **Developed by:** findthehead
|
| 21 |
+
- **Base Model:** Google T5
|
| 22 |
+
- **Training Data:** CVE Database
|
| 23 |
+
- **Language:** English
|
| 24 |
+
- **License:** Apache 2.0
|
| 25 |
+
|
| 26 |
+
This model has been specifically trained to understand and generate content related to cybersecurity vulnerabilities, CVE descriptions, and security intelligence.
|
| 27 |
+
|
| 28 |
+
## Use Cases
|
| 29 |
+
|
| 30 |
+
- Generate CVE descriptions
|
| 31 |
+
- Analyze vulnerability information
|
| 32 |
+
- Security research and analysis
|
| 33 |
+
- Automated vulnerability documentation
|
| 34 |
+
- CVE information extraction and summarization
|
| 35 |
+
|
| 36 |
+
## How to Use
|
| 37 |
+
|
| 38 |
+
### Option 1: Using Hugging Face Transformers (Safetensors)
|
| 39 |
+
|
| 40 |
+
Install the required dependencies:
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
pip install transformers torch
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
**Inference Code:**
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 50 |
+
|
| 51 |
+
# Load model and tokenizer
|
| 52 |
+
model_name = "Prachir-AI/cveparrot"
|
| 53 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 54 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 55 |
+
|
| 56 |
+
# Prepare input
|
| 57 |
+
input_text = "Describe CVE-2024-1234"
|
| 58 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
| 59 |
+
|
| 60 |
+
# Generate output
|
| 61 |
+
outputs = model.generate(
|
| 62 |
+
input_ids,
|
| 63 |
+
max_length=512,
|
| 64 |
+
num_beams=4,
|
| 65 |
+
early_stopping=True,
|
| 66 |
+
temperature=0.7,
|
| 67 |
+
do_sample=True
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Decode and print result
|
| 71 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 72 |
+
print(generated_text)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
**Advanced Usage with Custom Parameters:**
|
| 76 |
+
|
| 77 |
+
```python
|
| 78 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 79 |
+
|
| 80 |
+
# Load model and tokenizer
|
| 81 |
+
model_name = "Prachir-AI/cveparrot"
|
| 82 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 83 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 84 |
+
|
| 85 |
+
# Move to GPU if available
|
| 86 |
+
import torch
|
| 87 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 88 |
+
model = model.to(device)
|
| 89 |
+
|
| 90 |
+
# Example prompts
|
| 91 |
+
prompts = [
|
| 92 |
+
"Explain the security vulnerability:",
|
| 93 |
+
"Describe the CVE:",
|
| 94 |
+
"What is the impact of:",
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
input_text = prompts[0] + " CVE-2024-1234"
|
| 98 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
| 99 |
+
|
| 100 |
+
# Generate with custom parameters
|
| 101 |
+
outputs = model.generate(
|
| 102 |
+
input_ids,
|
| 103 |
+
max_length=256,
|
| 104 |
+
min_length=50,
|
| 105 |
+
num_beams=5,
|
| 106 |
+
no_repeat_ngram_size=2,
|
| 107 |
+
early_stopping=True,
|
| 108 |
+
temperature=0.8,
|
| 109 |
+
top_k=50,
|
| 110 |
+
top_p=0.95,
|
| 111 |
+
do_sample=True
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 115 |
+
print(generated_text)
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
### Option 2: Using GGUF Model with Ollama (Local Inference)
|
| 119 |
+
|
| 120 |
+
The model is available in GGUF format for efficient local inference using Ollama.
|
| 121 |
+
|
| 122 |
+
**Step 1: Install Ollama**
|
| 123 |
+
|
| 124 |
+
```bash
|
| 125 |
+
# Linux
|
| 126 |
+
curl -fsSL https://ollama.com/install.sh | sh
|
| 127 |
+
|
| 128 |
+
# macOS
|
| 129 |
+
brew install ollama
|
| 130 |
+
|
| 131 |
+
# Or download from https://ollama.com
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
**Step 2: Pull and Run the Model**
|
| 135 |
+
|
| 136 |
+
```bash
|
| 137 |
+
# Pull the model
|
| 138 |
+
ollama pull Prachir-AI/cveparrot
|
| 139 |
+
|
| 140 |
+
# Interactive mode
|
| 141 |
+
ollama run Prachir-AI/cveparrot
|
| 142 |
+
|
| 143 |
+
# Single query
|
| 144 |
+
ollama run Prachir-AI/cveparrot "Describe CVE-2024-1234"
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
**Using Ollama API (Python):**
|
| 148 |
+
|
| 149 |
+
```bash
|
| 150 |
+
pip install ollama
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
```python
|
| 154 |
+
import ollama
|
| 155 |
+
|
| 156 |
+
# Generate response
|
| 157 |
+
response = ollama.generate(
|
| 158 |
+
model='cveparrot',
|
| 159 |
+
prompt='Describe the security vulnerability CVE-2024-1234',
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
print(response['response'])
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
**Using Ollama API (curl):**
|
| 166 |
+
|
| 167 |
+
```bash
|
| 168 |
+
curl http://localhost:11434/api/generate -d '{
|
| 169 |
+
"model": "cveparrot",
|
| 170 |
+
"prompt": "Describe CVE-2024-1234",
|
| 171 |
+
"stream": false
|
| 172 |
+
}'
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
## Model Files
|
| 176 |
+
|
| 177 |
+
- `model.safetensors`: PyTorch model weights in Safetensors format
|
| 178 |
+
- `cveparrot.gguf`: Quantized GGUF model for efficient inference
|
| 179 |
+
- `tokenizer_config.json`: Tokenizer configuration
|
| 180 |
+
- `config.json`: Model configuration
|
| 181 |
+
- `spiece.model`: SentencePiece tokenizer model
|
| 182 |
+
|
| 183 |
+
## Training Details
|
| 184 |
+
|
| 185 |
+
This model was fine-tuned on CVE database entries to understand and generate security vulnerability information. The training focused on:
|
| 186 |
+
|
| 187 |
+
- CVE descriptions and technical details
|
| 188 |
+
- Vulnerability severity and impact analysis
|
| 189 |
+
- Security patches and mitigation strategies
|
| 190 |
+
- Affected software and version information
|
| 191 |
+
|
| 192 |
+
## Limitations
|
| 193 |
+
|
| 194 |
+
- The model is trained on historical CVE data and may not have information about very recent vulnerabilities
|
| 195 |
+
- Generated content should be verified against official CVE databases
|
| 196 |
+
- The model may occasionally generate plausible but incorrect security information
|
| 197 |
+
- Not a replacement for professional security analysis
|
| 198 |
+
|
| 199 |
+
## Ethical Considerations
|
| 200 |
+
|
| 201 |
+
This model is designed for:
|
| 202 |
+
- β
Security research and education
|
| 203 |
+
- β
Vulnerability analysis and documentation
|
| 204 |
+
- β
Automated security intelligence gathering
|
| 205 |
+
- β
Assisting security professionals
|
| 206 |
+
|
| 207 |
+
This model should NOT be used for:
|
| 208 |
+
- β Creating or exploiting vulnerabilities
|
| 209 |
+
- β Malicious hacking activities
|
| 210 |
+
- β Unauthorized security testing
|
| 211 |
+
|
| 212 |
+
## Citation
|
| 213 |
+
|
| 214 |
+
If you use this model in your research or applications, please cite:
|
| 215 |
+
|
| 216 |
+
```bibtex
|
| 217 |
+
@model{cveparrot2024,
|
| 218 |
+
author = {findthehead},
|
| 219 |
+
title = {CVEParrot: A T5 Model for CVE Analysis},
|
| 220 |
+
year = {2024},
|
| 221 |
+
publisher = {HuggingFace},
|
| 222 |
+
url = {https://huggingface.co/Prachir-AI/cveparrot}
|
| 223 |
+
}
|
| 224 |
+
```
|
| 225 |
+
|
| 226 |
+
## Developer
|
| 227 |
+
|
| 228 |
+
- **HuggingFace:** [findthehead](https://huggingface.co/findthehead)
|
| 229 |
+
|
| 230 |
+
## Feedback and Contributions
|
| 231 |
+
|
| 232 |
+
For issues, questions, or contributions, please visit the model repository on HuggingFace.
|
| 233 |
+
|
| 234 |
+
## License
|
| 235 |
+
|
| 236 |
+
This model is released under the Apache 2.0 License. See LICENSE file for details.
|
cveparrot.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78e3dd311ecfd17e9854a5b536176973d0bafb4f747f3147755c1ed5789a46c4
|
| 3 |
+
size 122073984
|