Prosho commited on
Commit
71bc004
·
verified ·
1 Parent(s): 606461c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: translation
3
+ language: multilingual
4
+ library_name: transformers
5
+ base_model:
6
+ - FacebookAI/xlm-roberta-large
7
+ ---
8
+
9
+ <div align="center">
10
+
11
+ <h1 style="font-family: 'Arial', sans-serif; font-size: 28px; font-weight: bold; color: black;">
12
+ 📊 Estimating Machine Translation Difficulty
13
+ </h1>
14
+
15
+ </div>
16
+
17
+ <div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
18
+ <a href="https://arxiv.org/abs/2508.10175"><img src="https://img.shields.io/badge/arXiv-2508.10175-b31b1b.svg"></a> &nbsp; &nbsp;
19
+ <a href="https://huggingface.co/collections/Prosho/translation-difficulty-estimators-6816665c008e1d22426eb6c4"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> &nbsp; &nbsp;
20
+ </div>
21
+
22
+ This repository contains the **SENTINEL<sub>SRC</sub>** metric model used for Difficulty Sampling at the [WMT25 General Machine Translation Shared Task](https://www2.statmt.org/wmt25/translation-task.html), and analyzed in our paper **Estimating Machine Translation Difficulty**.
23
+
24
+ ## Usage
25
+
26
+ To run this model, install the following git repository:
27
+
28
+ ```bash
29
+ pip install git+https://github.com/prosho-97/guardians-mt-eval
30
+ ```
31
+
32
+ After that, you can use this model within Python in the following way:
33
+
34
+ ```python
35
+ from sentinel_metric import download_model, load_from_checkpoint
36
+
37
+ model_path = download_model("Prosho/sentinel-src-24")
38
+ model = load_from_checkpoint(model_path)
39
+
40
+ data = [
41
+ {"src": "Please sign the form."},
42
+ {"src": "He spilled the beans, then backpedaled—talk about mixed signals!"}
43
+ ]
44
+
45
+ output = model.predict(data, batch_size=8, gpus=1)
46
+ ```
47
+
48
+ Output:
49
+ ```python
50
+ # Segment scores
51
+ >>> output.scores
52
+ [0.5726182460784912, -0.12408381700515747]
53
+
54
+ # System score
55
+ >>> output.system_score
56
+ 0.22426721453666687
57
+ ```
58
+
59
+ Where the higher the output score, the easier it is to translate the input source text.
60
+
61
+ ## Cite this work
62
+ This work has been accepted at [EMNLP 2025](https://2025.emnlp.org/). If you use any part, please consider citing our paper as follows:
63
+
64
+ ```bibtex
65
+ @misc{proietti2025estimatingmachinetranslationdifficulty,
66
+ title={Estimating Machine Translation Difficulty},
67
+ author={Lorenzo Proietti and Stefano Perrella and Vilém Zouhar and Roberto Navigli and Tom Kocmi},
68
+ year={2025},
69
+ eprint={2508.10175},
70
+ archivePrefix={arXiv},
71
+ primaryClass={cs.CL},
72
+ url={https://arxiv.org/abs/2508.10175},
73
+ }
74
+ ```