File size: 4,027 Bytes
5c40cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
license: mit
datasets:
- a-m-team/AM-DeepSeek-R1-Distilled-1.4M
language:
- en
metrics:
- accuracy
base_model:
- deepseek-ai/DeepSeek-V3.2
pipeline_tag: text-to-image
library_name: adapter-transformers
tags:
- agent
---

# 🧠 SyntraLLM
**SyntraLLM** is a packaged and redistributed version of an open-source, high-performance
reasoning language model based on the **DeepSeek R1** architecture and weights.

This repository provides:
- Full model weights in Hugging Face–compatible format  
- Tokenizer & configs
- Example inference code (Python + Node.js)
- Ready-to-deploy structure for chatbots, agents, and backend systems

SyntraLLM is intended for the Syntra ecosystem, enabling seamless LLM integration across
applications, automation flows, and developer tools.

---

## 🔍 Base Model
This model is derived from the open-source **DeepSeek R1** release.

- Original Authors: *DeepSeek*  
- License: See included `LICENSE` file (DeepSeek R1 license applies)  
- Architecture: R1 (reasoning-focused causal transformer)

No modifications are made to the model’s weights or architecture.  
Only packaging, structure, naming, and documentation have been adapted for Syntra distribution.

---

## ✨ Features
- ⚡ High-performance reasoning and chain-of-thought generation  
- 📦 HuggingFace-compatible folder structure  
- 🔧 Clean, predictable inference behavior  
- 🧩 Suitable for agents, tools, automation, and backend AI services  
- 🔌 Works on CPU, GPU, and cloud inference backends  
- 🧰 Supports vLLM, TGI, and local Transformers  

---

## 📦 Repository Contents
config.json
tokenizer.json
tokenizer_config.json
generation_config.json
model.safetensors
README.md (this file)
LICENSE (original license)


---

## 🚀 Quick Start (Python)

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "syntra-dev/SyntraLLM"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")

prompt = "Explain how a blockchain works in simple terms."

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **inputs,
    max_new_tokens=300,
    temperature=0.7
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))


🟦 Quick Start (Node.js – transformers.js)
import { pipeline } from "@xenova/transformers";

const pipe = await pipeline(
  "text-generation",
  "syntra-dev/SyntraLLM"
);

const out = await pipe("What is quantum entanglement?", {
  max_new_tokens: 200
});

console.log(out[0].generated_text);

🔥 Chat Template

SyntraLLM is compatible with standard chat formatting:

<user>
Your question here...
</user>

<assistant>


Example:

prompt = "<user>\nGive me a 1 paragraph summary of Solana.\n</user>\n<assistant>"

🧪 Example Prompting (Reasoning Style)
<user>
Solve this: If train A travels 30 km in 20 minutes and train B travels 45 km in 30 minutes, which one is faster?
Show step-by-step reasoning.
</user>
<assistant>

⚠️ Limitations

SyntraLLM inherits all limitations of the base model, including:

Possible hallucinations

Potential for generating inaccurate or unsafe content

Lack of domain-specific training

Biases present in the original model

Syntra does not modify or fine-tune the base model.

🔒 Safety & Responsible Use

Do not rely on the model for factual decision-making without verification

Not suitable for medical, financial, or legal advice

Further safety fine-tuning is recommended before production deployment

For production environments, consider:

Output moderation

Rule-based filtering

Reinforcement learning with safety datasets

📄 License

This repository redistributes the original model under the DeepSeek-R1 license.
See LICENSE for full terms.
SyntraLLM only repackages and distributes the model, and does not claim training ownership.

🏷 Maintainer

Syntra Dev Team
HuggingFace: https://huggingface.co/syntra-dev

You are welcome to contribute extensions, tools, or integrations!