--- tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:114138 - loss:BinaryCrossEntropyLoss base_model: cross-encoder/ms-marco-MiniLM-L6-v2 pipeline_tag: text-ranking library_name: sentence-transformers metrics: - accuracy - accuracy_threshold - f1 - f1_threshold - precision - recall - average_precision model-index: - name: CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2 results: - task: type: cross-encoder-binary-classification name: Cross Encoder Binary Classification dataset: name: eval type: eval metrics: - type: accuracy value: 0.8988329916416969 name: Accuracy - type: accuracy_threshold value: 0.10371464490890503 name: Accuracy Threshold - type: f1 value: 0.8317532549614461 name: F1 - type: f1_threshold value: -0.45371487736701965 name: F1 Threshold - type: precision value: 0.7977691561590688 name: Precision - type: recall value: 0.8687615526802218 name: Recall - type: average_precision value: 0.9072097927185474 name: Average Precision --- # CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2 This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("cross_encoder_model_id") # Get scores for pairs of texts pairs = [ ['The item is a promotional display featuring a variety of phone cases, including solid blue cases, cases with artistic designs, and one showcasing a kitten wearing a Santa hat.', 'A black phone case.'], ['It was a black umbrella with a loop.', 'A new, mustard-yellow, waffle-knit long-sleeved henley shirt features a three-button placket, a chest pocket with a "Custom Supply" label, and an "L.O.G.G." tag at the neckline.'], ['A white sneaker with black, pink, and silver accents.', 'A blue backpack has an orange and white front with black straps.'], ['Oh, that sleek white TYESO tumbler with the silver top, I was just about to try it out for keeping my coffee warm all day.', 'It is a white, metal TYESO brand vacuum-insulated bottle/mug with a silver rim and a black lid with a clear straw.'], ['It is a bright orange backpack with a small pink strawberry charm.', 'The medium-sized black backpack, likely made of nylon or a similar synthetic material, features a white rectangular tag with "MUSIC IS POWER" printed on it and appears to be in good condition.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'The item is a promotional display featuring a variety of phone cases, including solid blue cases, cases with artistic designs, and one showcasing a kitten wearing a Santa hat.', [ 'A black phone case.', 'A new, mustard-yellow, waffle-knit long-sleeved henley shirt features a three-button placket, a chest pocket with a "Custom Supply" label, and an "L.O.G.G." tag at the neckline.', 'A blue backpack has an orange and white front with black straps.', 'It is a white, metal TYESO brand vacuum-insulated bottle/mug with a silver rim and a black lid with a clear straw.', 'The medium-sized black backpack, likely made of nylon or a similar synthetic material, features a white rectangular tag with "MUSIC IS POWER" printed on it and appears to be in good condition.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` ## Evaluation ### Metrics #### Cross Encoder Binary Classification * Dataset: `eval` * Evaluated with [CEBinaryClassificationEvaluator](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CEBinaryClassificationEvaluator) | Metric | Value | |:----------------------|:-----------| | accuracy | 0.8988 | | accuracy_threshold | 0.1037 | | f1 | 0.8318 | | f1_threshold | -0.4537 | | precision | 0.7978 | | recall | 0.8688 | | **average_precision** | **0.9072** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 114,138 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | The item is a promotional display featuring a variety of phone cases, including solid blue cases, cases with artistic designs, and one showcasing a kitten wearing a Santa hat. | A black phone case. | 0.0 | | It was a black umbrella with a loop. | A new, mustard-yellow, waffle-knit long-sleeved henley shirt features a three-button placket, a chest pocket with a "Custom Supply" label, and an "L.O.G.G." tag at the neckline. | 0.0 | | A white sneaker with black, pink, and silver accents. | A blue backpack has an orange and white front with black straps. | 0.0 | * Loss: [BinaryCrossEntropyLoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | eval_average_precision | |:------:|:-----:|:-------------:|:----------------------:| | 0.0701 | 500 | 0.414 | 0.8339 | | 0.1402 | 1000 | 0.3334 | 0.8344 | | 0.2103 | 1500 | 0.2989 | 0.8549 | | 0.2803 | 2000 | 0.2984 | 0.8596 | | 0.3504 | 2500 | 0.2921 | 0.8707 | | 0.4205 | 3000 | 0.2882 | 0.8734 | | 0.4906 | 3500 | 0.2831 | 0.8802 | | 0.5607 | 4000 | 0.2878 | 0.8828 | | 0.6308 | 4500 | 0.2651 | 0.8857 | | 0.7009 | 5000 | 0.2693 | 0.8854 | | 0.7710 | 5500 | 0.2731 | 0.8876 | | 0.8410 | 6000 | 0.2666 | 0.8905 | | 0.9111 | 6500 | 0.2594 | 0.8925 | | 0.9812 | 7000 | 0.2631 | 0.8956 | | 1.0 | 7134 | - | 0.8921 | | 1.0513 | 7500 | 0.2434 | 0.8955 | | 1.1214 | 8000 | 0.2374 | 0.8969 | | 1.1915 | 8500 | 0.2197 | 0.8962 | | 1.2616 | 9000 | 0.2487 | 0.8980 | | 1.3317 | 9500 | 0.2406 | 0.8990 | | 1.4017 | 10000 | 0.2384 | 0.8995 | | 1.4718 | 10500 | 0.2339 | 0.9021 | | 1.5419 | 11000 | 0.2292 | 0.9034 | | 1.6120 | 11500 | 0.2214 | 0.9046 | | 1.6821 | 12000 | 0.2264 | 0.9049 | | 1.7522 | 12500 | 0.2384 | 0.9058 | | 1.8223 | 13000 | 0.2309 | 0.9072 | ### Framework Versions - Python: 3.12.10 - Sentence Transformers: 5.1.2 - Transformers: 4.57.1 - PyTorch: 2.9.1+cu128 - Accelerate: 1.11.0 - Datasets: 4.4.1 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```