lazarevich commited on
Commit
d817890
·
0 Parent(s):

upload checkpoint

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +224 -0
  2. chat_template.jinja +103 -0
  3. config.json +924 -0
  4. generation_config.json +10 -0
  5. model-00001-of-00045.safetensors +3 -0
  6. model-00002-of-00045.safetensors +3 -0
  7. model-00003-of-00045.safetensors +3 -0
  8. model-00004-of-00045.safetensors +3 -0
  9. model-00005-of-00045.safetensors +3 -0
  10. model-00006-of-00045.safetensors +3 -0
  11. model-00007-of-00045.safetensors +3 -0
  12. model-00008-of-00045.safetensors +3 -0
  13. model-00009-of-00045.safetensors +3 -0
  14. model-00010-of-00045.safetensors +3 -0
  15. model-00011-of-00045.safetensors +3 -0
  16. model-00012-of-00045.safetensors +3 -0
  17. model-00013-of-00045.safetensors +3 -0
  18. model-00014-of-00045.safetensors +3 -0
  19. model-00015-of-00045.safetensors +3 -0
  20. model-00016-of-00045.safetensors +3 -0
  21. model-00017-of-00045.safetensors +3 -0
  22. model-00018-of-00045.safetensors +3 -0
  23. model-00019-of-00045.safetensors +3 -0
  24. model-00020-of-00045.safetensors +3 -0
  25. model-00021-of-00045.safetensors +3 -0
  26. model-00022-of-00045.safetensors +3 -0
  27. model-00023-of-00045.safetensors +3 -0
  28. model-00024-of-00045.safetensors +3 -0
  29. model-00025-of-00045.safetensors +3 -0
  30. model-00026-of-00045.safetensors +3 -0
  31. model-00027-of-00045.safetensors +3 -0
  32. model-00028-of-00045.safetensors +3 -0
  33. model-00029-of-00045.safetensors +3 -0
  34. model-00030-of-00045.safetensors +3 -0
  35. model-00031-of-00045.safetensors +3 -0
  36. model-00032-of-00045.safetensors +3 -0
  37. model-00033-of-00045.safetensors +3 -0
  38. model-00034-of-00045.safetensors +3 -0
  39. model-00035-of-00045.safetensors +3 -0
  40. model-00036-of-00045.safetensors +3 -0
  41. model-00037-of-00045.safetensors +3 -0
  42. model-00038-of-00045.safetensors +3 -0
  43. model-00039-of-00045.safetensors +3 -0
  44. model-00040-of-00045.safetensors +3 -0
  45. model-00041-of-00045.safetensors +3 -0
  46. model-00042-of-00045.safetensors +3 -0
  47. model-00043-of-00045.safetensors +3 -0
  48. model-00044-of-00045.safetensors +3 -0
  49. model-00045-of-00045.safetensors +3 -0
  50. model.safetensors.index.json +0 -0
README.md ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - glm
7
+ - MOE
8
+ - pruning
9
+ - compression
10
+ license: mit
11
+ name: cerebras/GLM-4.6-REAP-218B-A32B-FP8
12
+ description: >
13
+ This model was obtained by uniformly pruning 40% of experts in GLM-4.6-FP8 using the REAP method.
14
+ readme: >
15
+ https://huggingface.co/cerebras/GLM-4.6-REAP-218B-A32B-FP8/main/README.md
16
+ license_link: https://huggingface.co/zai-org/GLM-4.6-FP8/blob/main/LICENSE
17
+ pipeline_tag: text-generation
18
+ base_model:
19
+ - zai-org/GLM-4.6-FP8
20
+ ---
21
+
22
+ <p align="center">
23
+ <em>𓌳 <strong>REAP</strong>𓌳 the Experts: Why Pruning Prevails for One-Shot MoE Compression</em><br>
24
+ <img src="https://i.imgur.com/rmzG3gg.png" alt="REAP" width="75%">
25
+ </p>
26
+
27
+ # GLM-4.6-REAP-218B-A32B-FP8
28
+
29
+ ## ✨ Highlights
30
+
31
+ Introducing **GLM-4.6-REAP-218B-A32B-FP8**, a **memory-efficient compressed variant** of GLM-4.6-FP8 that maintains near-identical performance while being **40% lighter**.
32
+
33
+ This model was created using **REAP (Router-weighted Expert Activation Pruning)**, a novel expert pruning method that selectively removes redundant experts while preserving the router's independent control over remaining experts. Key features include:
34
+
35
+ - **Near-Lossless Performance**: Maintains almost identical accuracy on code generation, agentic coding, and function calling tasks compared to the full 355B model
36
+ - **40% Memory Reduction**: Compressed from 355B to 218B parameters, significantly lowering deployment costs and memory requirements
37
+ - **Preserved Capabilities**: Retains all core functionalities including code generation, agentic workflows, repository-scale understanding, and function calling
38
+ - **Drop-in Compatibility**: Works with vanilla vLLM - no source modifications or custom patches required
39
+ - **Optimized for Real-World Use**: Particularly effective for resource-constrained environments, local deployments, and academic research
40
+
41
+ **For downstream low-bit quantization, we suggest using the [BF16 variant](https://huggingface.co/cerebras/GLM-4.6-REAP-218B-A32B).**
42
+
43
+ ---
44
+ ## 📋 Model Overview
45
+
46
+ **GLM-4.6-REAP-218B-A32B-FP8** has the following specifications:
47
+
48
+ - **Base Model**: GLM-4.6-FP8
49
+ - **Compression Method**: REAP (Router-weighted Expert Activation Pruning)
50
+ - **Compression Ratio**: 40% expert pruning
51
+ - **Type**: Sparse Mixture-of-Experts (SMoE) Causal Language Model
52
+ - **Number of Parameters**: 218B total, 32B activated per token
53
+ - **Number of Layers**: 92
54
+ - **Number of Attention Heads (GQA)**: 96 for Q and 8 for KV
55
+ - **Number of Experts**: 96 (uniformly pruned from 160)
56
+ - **Number of Activated Experts**: 8 per token
57
+ - **Context Length**: 202,752 tokens
58
+ - **License**: MIT
59
+
60
+ ---
61
+
62
+ ## 📊 Evaluations
63
+
64
+ <table>
65
+ <thead>
66
+ <tr>
67
+ <th align="left">Benchmark</th>
68
+ <th align="center">GLM-4.6-FP8</th>
69
+ <th align="center"><a href="https://huggingface.co/cerebras/GLM-4.6-REAP-268B-A32B-FP8">GLM-4.6-REAP-268B-A32B-FP8</a></th>
70
+ <th align="center"><a href="https://huggingface.co/cerebras/GLM-4.6-REAP-252B-A32B-FP8">GLM-4.6-REAP-252B-A32B-FP8</a></th>
71
+ <th align="center"><a href="https://huggingface.co/cerebras/GLM-4.6-REAP-218B-A32B-FP8">GLM-4.6-REAP-218B-A32B-FP8</a></th>
72
+ </tr>
73
+ </thead>
74
+ <tbody>
75
+ <tr>
76
+ <td><strong>Compression</strong></td>
77
+ <td align="center">—</td>
78
+ <td align="center">25%</td>
79
+ <td align="center">30%</td>
80
+ <td align="center">40%</td>
81
+ </tr>
82
+ <tr>
83
+ <td colspan="5" align="center"><strong>Coding</strong></td>
84
+ </tr>
85
+ <tr>
86
+ <td><strong>HumanEval</strong></td>
87
+ <td align="center">96.3</td>
88
+ <td align="center">96.3</td>
89
+ <td align="center">95.7</td>
90
+ <td align="center">95.1</td>
91
+ </tr>
92
+ <tr>
93
+ <td><strong>HumanEval+</strong></td>
94
+ <td align="center">93.3</td>
95
+ <td align="center">91.5</td>
96
+ <td align="center">90.9</td>
97
+ <td align="center">90.2</td>
98
+ </tr>
99
+ <tr>
100
+ <td><strong>MBPP</strong></td>
101
+ <td align="center">87.6</td>
102
+ <td align="center">89.9</td>
103
+ <td align="center">89.9</td>
104
+ <td align="center">89.4</td>
105
+ </tr>
106
+ <tr>
107
+ <td><strong>MBPP+</strong></td>
108
+ <td align="center">73.5</td>
109
+ <td align="center">74.9</td>
110
+ <td align="center">73.5</td>
111
+ <td align="center">73.8</td>
112
+ </tr>
113
+ <tr>
114
+ <td colspan="5" align="center"><strong>Reasoning</strong></td>
115
+ </tr>
116
+ <tr>
117
+ <td><strong>GPQA diamond</strong> (thinking)</td>
118
+ <td align="center">78.8</td>
119
+ <td align="center">76.8</td>
120
+ <td align="center">75.8</td>
121
+ <td align="center">69.7</td>
122
+ </tr>
123
+ <tr>
124
+ <td><strong>AIME25</strong> (thinking)</td>
125
+ <td align="center">90.0</td>
126
+ <td align="center">93.3</td>
127
+ <td align="center">90.0</td>
128
+ <td align="center">90.0</td>
129
+ </tr>
130
+ <tr>
131
+ <td><strong>MATH-500</strong> (thinking)</td>
132
+ <td align="center">95.5</td>
133
+ <td align="center">97.0</td>
134
+ <td align="center">94.8</td>
135
+ <td align="center">93.3</td>
136
+ </tr>
137
+ <tr>
138
+ <td colspan="5" align="center"><strong>Tool Calling</strong></td>
139
+ </tr>
140
+ <tr>
141
+ <td><strong>BFCL-v3</strong> (thinking)</td>
142
+ <td align="center">78.4</td>
143
+ <td align="center">77.3</td>
144
+ <td align="center">76.8</td>
145
+ <td align="center">74.2</td>
146
+ </tr>
147
+ </tbody>
148
+ </table>
149
+
150
+
151
+ 🟩 *This checkpoint maintains almost identical performance while being 40% lighter.*
152
+
153
+ For more details on the evaluation setup, refer to the [REAP arXiv preprint](https://arxiv.org/abs/2510.13999).
154
+
155
+ ---
156
+
157
+ ## 🚀 Deployment
158
+
159
+ You can deploy the model directly using the **latest vLLM** (v0.11.0), no source modifications or custom patches required.
160
+
161
+ ```bash
162
+ vllm serve cerebras/GLM-4.6-REAP-218B-A32B-FP8 \
163
+ --tensor-parallel-size 8 \
164
+ --tool-call-parser glm45 \
165
+ --enable-auto-tool-choice \
166
+ --enable-expert-parallel
167
+ ```
168
+
169
+ If you encounter insufficient memory when running this model, you might need to set a lower value for `--max-num-seqs` flag (e.g. set to 64).
170
+
171
+
172
+ ## 🧩 Model Creation
173
+
174
+ This checkpoint was created by applying the **REAP (Router-weighted Expert Activation Pruning)** method uniformly across all Mixture-of-Experts (MoE) blocks of **GLM-4.6-FP8**, with a **40% pruning rate**.
175
+
176
+ ### How REAP Works
177
+
178
+ REAP selects experts to prune based on a novel **saliency criterion** that considers both:
179
+ - **Router gate values**: How frequently and strongly the router activates each expert
180
+ - **Expert activation norms**: The magnitude of each expert's output contributions
181
+
182
+ This dual consideration ensures that experts contributing minimally to the layer's output are pruned, while preserving those that play critical roles in the model's computations.
183
+
184
+ ### Key Advantages
185
+
186
+ - **One-Shot Compression**: No fine-tuning required after pruning - the model is immediately ready for deployment
187
+ - **Preserved Router Control**: Unlike expert merging methods, REAP maintains the router's independent, input-dependent control over remaining experts, avoiding "functional subspace collapse"
188
+ - **Generative Task Superiority**: REAP significantly outperforms expert merging approaches on generative benchmarks (code generation, creative writing, mathematical reasoning) while maintaining competitive performance on discriminative tasks
189
+
190
+ ### Calibration
191
+
192
+ The model was calibrated using a diverse mixture of domain-specific datasets including:
193
+ - Code generation samples ([evol-codealpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1))
194
+ - Function calling examples ([xlam-function-calling](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k))
195
+ - Agentic multi-turn trajectories ([SWE-smith-trajectories](https://huggingface.co/datasets/SWE-bench/SWE-smith-trajectories))
196
+
197
+ 📚 For more details, refer to the following resources:
198
+
199
+ - [🧾 arXiv Preprint](https://arxiv.org/abs/2510.13999)
200
+ - [🧾 REAP Blog](https://www.cerebras.ai/blog/reap)
201
+ - [💻 REAP Codebase (GitHub)](https://github.com/CerebrasResearch/reap)
202
+
203
+ ---
204
+
205
+ ## ⚖️ License
206
+
207
+ This model is derived from
208
+ **[`zai-org/GLM-4.6-FP8`](https://huggingface.co/zai-org/GLM-4.6-FP8)**
209
+ and distributed under the **MIT license**.
210
+
211
+ ---
212
+
213
+ ## 🧾 Citation
214
+
215
+ If you use this checkpoint, please cite the REAP paper:
216
+
217
+ ```bibtex
218
+ @article{lasby-reap,
219
+ title={REAP the Experts: Why Pruning Prevails for One-Shot MoE compression},
220
+ author={Lasby, Mike and Lazarevich, Ivan and Sinnadurai, Nish and Lie, Sean and Ioannou, Yani and Thangarasa, Vithursan},
221
+ journal={arXiv preprint arXiv:2510.13999},
222
+ year={2025}
223
+ }
224
+ ```
chat_template.jinja ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [gMASK]<sop>
2
+ {%- if tools -%}
3
+ <|system|>
4
+ # Tools
5
+
6
+ You may call one or more functions to assist with the user query.
7
+
8
+ You are provided with function signatures within <tools></tools> XML tags:
9
+ <tools>
10
+ {% for tool in tools %}
11
+ {{ tool | tojson(ensure_ascii=False) }}
12
+ {% endfor %}
13
+ </tools>
14
+
15
+ For each function call, output the function name and arguments within the following XML format:
16
+ <tool_call>{function-name}
17
+ <arg_key>{arg-key-1}</arg_key>
18
+ <arg_value>{arg-value-1}</arg_value>
19
+ <arg_key>{arg-key-2}</arg_key>
20
+ <arg_value>{arg-value-2}</arg_value>
21
+ ...
22
+ </tool_call>{%- endif -%}
23
+ {%- macro visible_text(content) -%}
24
+ {%- if content is string -%}
25
+ {{- content }}
26
+ {%- elif content is iterable and content is not mapping -%}
27
+ {%- for item in content -%}
28
+ {%- if item is mapping and item.type == 'text' -%}
29
+ {{- item.text }}
30
+ {%- elif item is string -%}
31
+ {{- item }}
32
+ {%- endif -%}
33
+ {%- endfor -%}
34
+ {%- else -%}
35
+ {{- content }}
36
+ {%- endif -%}
37
+ {%- endmacro -%}
38
+ {%- set ns = namespace(last_user_index=-1) %}
39
+ {%- for m in messages %}
40
+ {%- if m.role == 'user' %}
41
+ {% set ns.last_user_index = loop.index0 -%}
42
+ {%- endif %}
43
+ {%- endfor %}
44
+ {% for m in messages %}
45
+ {%- if m.role == 'user' -%}<|user|>
46
+ {{ visible_text(m.content) }}
47
+ {{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}
48
+ {%- elif m.role == 'assistant' -%}
49
+ <|assistant|>
50
+ {%- set reasoning_content = '' %}
51
+ {%- set content = visible_text(m.content) %}
52
+ {%- if m.reasoning_content is string %}
53
+ {%- set reasoning_content = m.reasoning_content %}
54
+ {%- else %}
55
+ {%- if '</think>' in content %}
56
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
57
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
58
+ {%- endif %}
59
+ {%- endif %}
60
+ {%- if loop.index0 > ns.last_user_index and reasoning_content -%}
61
+ {{ '\n<think>' + reasoning_content.strip() + '</think>'}}
62
+ {%- else -%}
63
+ {{ '\n<think></think>' }}
64
+ {%- endif -%}
65
+ {%- if content.strip() -%}
66
+ {{ '\n' + content.strip() }}
67
+ {%- endif -%}
68
+ {% if m.tool_calls %}
69
+ {% for tc in m.tool_calls %}
70
+ {%- if tc.function %}
71
+ {%- set tc = tc.function %}
72
+ {%- endif %}
73
+ {{ '\n<tool_call>' + tc.name }}
74
+ {% set _args = tc.arguments %}
75
+ {% for k, v in _args.items() %}
76
+ <arg_key>{{ k }}</arg_key>
77
+ <arg_value>{{ v | tojson(ensure_ascii=False) if v is not string else v }}</arg_value>
78
+ {% endfor %}
79
+ </tool_call>{% endfor %}
80
+ {% endif %}
81
+ {%- elif m.role == 'tool' -%}
82
+ {%- if m.content is string -%}
83
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
84
+ {{- '<|observation|>' }}
85
+ {%- endif %}
86
+ {{- '\n<tool_response>\n' }}
87
+ {{- m.content }}
88
+ {{- '\n</tool_response>' }}
89
+ {%- else -%}
90
+ <|observation|>{% for tr in m.content %}
91
+
92
+ <tool_response>
93
+ {{ tr.output if tr.output is defined else tr }}
94
+ </tool_response>{% endfor -%}
95
+ {% endif -%}
96
+ {%- elif m.role == 'system' -%}
97
+ <|system|>
98
+ {{ visible_text(m.content) }}
99
+ {%- endif -%}
100
+ {%- endfor -%}
101
+ {%- if add_generation_prompt -%}
102
+ <|assistant|>{{- '\n<think></think>' if (enable_thinking is defined and not enable_thinking) else '' -}}
103
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,924 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Glm4MoeForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": [
8
+ 151329,
9
+ 151336,
10
+ 151338
11
+ ],
12
+ "first_k_dense_replace": 3,
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 5120,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 12288,
18
+ "max_position_embeddings": 202752,
19
+ "model_type": "glm4_moe",
20
+ "moe_intermediate_size": 1536,
21
+ "n_group": 1,
22
+ "n_routed_experts": 96,
23
+ "n_shared_experts": 1,
24
+ "norm_topk_prob": true,
25
+ "num_attention_heads": 96,
26
+ "num_experts_per_tok": 8,
27
+ "num_hidden_layers": 92,
28
+ "num_key_value_heads": 8,
29
+ "num_nextn_predict_layers": 0,
30
+ "pad_token_id": 151329,
31
+ "partial_rotary_factor": 0.5,
32
+ "quantization_config": {
33
+ "config_groups": {
34
+ "group_0": {
35
+ "input_activations": {
36
+ "actorder": null,
37
+ "block_structure": null,
38
+ "dynamic": true,
39
+ "group_size": null,
40
+ "num_bits": 8,
41
+ "observer": null,
42
+ "observer_kwargs": {},
43
+ "strategy": "token",
44
+ "symmetric": true,
45
+ "type": "float"
46
+ },
47
+ "output_activations": null,
48
+ "targets": [
49
+ "Linear"
50
+ ],
51
+ "weights": {
52
+ "actorder": null,
53
+ "block_structure": null,
54
+ "dynamic": false,
55
+ "group_size": null,
56
+ "num_bits": 8,
57
+ "observer": "minmax",
58
+ "observer_kwargs": {},
59
+ "strategy": "channel",
60
+ "symmetric": true,
61
+ "type": "float"
62
+ }
63
+ }
64
+ },
65
+ "format": "float-quantized",
66
+ "global_compression_ratio": null,
67
+ "ignore": [
68
+ "model.layers.12.input_layernorm",
69
+ "model.layers.48.input_layernorm",
70
+ "model.layers.74.input_layernorm",
71
+ "model.layers.5.self_attn.q_norm",
72
+ "model.layers.11.self_attn.k_proj.bias",
73
+ "model.layers.3.self_attn.k_proj.bias",
74
+ "model.layers.53.self_attn.q_norm",
75
+ "model.layers.52.mlp.gate",
76
+ "model.layers.29.mlp.gate.e_score_correction_bias",
77
+ "model.layers.34.post_attention_layernorm",
78
+ "model.layers.88.post_attention_layernorm",
79
+ "model.layers.17.input_layernorm",
80
+ "model.layers.37.self_attn.k_norm",
81
+ "model.layers.9.mlp.gate.e_score_correction_bias",
82
+ "model.layers.17.self_attn.v_proj.bias",
83
+ "model.layers.82.self_attn.q_norm",
84
+ "model.layers.41.mlp.gate",
85
+ "model.layers.73.input_layernorm",
86
+ "model.layers.72.input_layernorm",
87
+ "model.layers.61.post_attention_layernorm",
88
+ "model.layers.30.input_layernorm",
89
+ "model.layers.80.mlp.gate",
90
+ "model.layers.14.input_layernorm",
91
+ "model.layers.45.self_attn.k_norm",
92
+ "model.layers.55.mlp.gate",
93
+ "model.layers.9.input_layernorm",
94
+ "model.layers.13.input_layernorm",
95
+ "model.layers.47.self_attn.q_proj.bias",
96
+ "model.layers.84.post_attention_layernorm",
97
+ "model.layers.85.self_attn.q_norm",
98
+ "model.layers.53.self_attn.v_proj.bias",
99
+ "model.layers.83.self_attn.v_proj.bias",
100
+ "model.layers.35.self_attn.v_proj.bias",
101
+ "model.layers.76.mlp.gate.e_score_correction_bias",
102
+ "model.layers.36.input_layernorm",
103
+ "model.layers.13.post_attention_layernorm",
104
+ "model.layers.71.self_attn.k_proj.bias",
105
+ "model.layers.84.mlp.gate.e_score_correction_bias",
106
+ "model.layers.46.self_attn.k_norm",
107
+ "model.layers.50.self_attn.q_norm",
108
+ "model.layers.59.self_attn.q_proj.bias",
109
+ "model.layers.5.input_layernorm",
110
+ "model.layers.29.mlp.gate",
111
+ "model.layers.73.self_attn.q_norm",
112
+ "model.layers.27.mlp.gate",
113
+ "model.layers.49.post_attention_layernorm",
114
+ "model.layers.63.self_attn.q_proj.bias",
115
+ "model.layers.7.self_attn.q_proj.bias",
116
+ "model.layers.5.self_attn.k_proj.bias",
117
+ "model.layers.70.self_attn.q_proj.bias",
118
+ "model.layers.70.self_attn.k_norm",
119
+ "model.layers.15.self_attn.q_proj.bias",
120
+ "model.layers.59.self_attn.q_norm",
121
+ "model.layers.89.self_attn.k_proj.bias",
122
+ "model.layers.89.self_attn.q_norm",
123
+ "model.layers.42.mlp.gate.e_score_correction_bias",
124
+ "model.layers.62.self_attn.q_norm",
125
+ "model.layers.18.input_layernorm",
126
+ "model.layers.79.post_attention_layernorm",
127
+ "model.layers.63.self_attn.k_norm",
128
+ "model.layers.58.input_layernorm",
129
+ "model.layers.57.mlp.gate",
130
+ "model.layers.32.self_attn.q_norm",
131
+ "model.layers.34.self_attn.v_proj.bias",
132
+ "model.layers.83.self_attn.k_proj.bias",
133
+ "model.layers.7.input_layernorm",
134
+ "model.layers.72.self_attn.k_norm",
135
+ "model.layers.55.self_attn.v_proj.bias",
136
+ "model.layers.2.self_attn.k_proj.bias",
137
+ "model.layers.23.post_attention_layernorm",
138
+ "model.layers.60.post_attention_layernorm",
139
+ "model.layers.33.self_attn.k_proj.bias",
140
+ "model.layers.85.self_attn.k_proj.bias",
141
+ "model.layers.83.mlp.gate.e_score_correction_bias",
142
+ "model.layers.20.self_attn.k_proj.bias",
143
+ "model.layers.11.mlp.gate",
144
+ "model.layers.82.input_layernorm",
145
+ "model.layers.83.self_attn.q_norm",
146
+ "model.layers.9.post_attention_layernorm",
147
+ "model.layers.55.mlp.gate.e_score_correction_bias",
148
+ "model.layers.21.mlp.gate",
149
+ "model.layers.41.mlp.gate.e_score_correction_bias",
150
+ "model.layers.10.mlp.gate.e_score_correction_bias",
151
+ "model.layers.49.mlp.gate",
152
+ "model.layers.56.self_attn.k_norm",
153
+ "model.layers.86.self_attn.q_norm",
154
+ "model.layers.89.input_layernorm",
155
+ "model.layers.16.input_layernorm",
156
+ "model.layers.25.mlp.gate.e_score_correction_bias",
157
+ "model.layers.8.self_attn.k_norm",
158
+ "model.layers.72.post_attention_layernorm",
159
+ "model.layers.92.self_attn.q_norm",
160
+ "model.layers.73.post_attention_layernorm",
161
+ "model.layers.71.mlp.gate.e_score_correction_bias",
162
+ "model.layers.42.input_layernorm",
163
+ "model.layers.25.self_attn.k_norm",
164
+ "model.layers.50.self_attn.q_proj.bias",
165
+ "model.layers.13.self_attn.k_norm",
166
+ "model.layers.65.mlp.gate.e_score_correction_bias",
167
+ "model.layers.9.self_attn.k_norm",
168
+ "model.layers.3.input_layernorm",
169
+ "model.layers.90.self_attn.q_proj.bias",
170
+ "model.layers.35.self_attn.q_norm",
171
+ "model.layers.74.mlp.gate",
172
+ "model.layers.21.self_attn.k_norm",
173
+ "model.layers.92.mlp.gate",
174
+ "model.layers.15.mlp.gate.e_score_correction_bias",
175
+ "model.layers.61.self_attn.k_proj.bias",
176
+ "model.layers.63.self_attn.q_norm",
177
+ "model.layers.73.self_attn.q_proj.bias",
178
+ "model.layers.18.self_attn.q_norm",
179
+ "model.layers.45.mlp.gate",
180
+ "model.layers.52.self_attn.v_proj.bias",
181
+ "model.layers.22.post_attention_layernorm",
182
+ "model.layers.85.self_attn.q_proj.bias",
183
+ "model.layers.3.self_attn.k_norm",
184
+ "model.layers.54.self_attn.v_proj.bias",
185
+ "model.layers.79.self_attn.v_proj.bias",
186
+ "model.layers.31.self_attn.q_proj.bias",
187
+ "model.layers.2.input_layernorm",
188
+ "model.layers.57.self_attn.q_norm",
189
+ "model.layers.65.self_attn.k_norm",
190
+ "model.layers.60.input_layernorm",
191
+ "model.layers.70.self_attn.v_proj.bias",
192
+ "model.layers.87.post_attention_layernorm",
193
+ "model.layers.83.post_attention_layernorm",
194
+ "model.layers.51.self_attn.k_proj.bias",
195
+ "model.layers.23.self_attn.k_norm",
196
+ "model.layers.49.self_attn.k_norm",
197
+ "model.layers.76.self_attn.k_proj.bias",
198
+ "model.layers.7.self_attn.q_norm",
199
+ "model.layers.54.mlp.gate",
200
+ "model.layers.63.post_attention_layernorm",
201
+ "model.layers.27.self_attn.k_proj.bias",
202
+ "model.layers.81.input_layernorm",
203
+ "model.layers.66.post_attention_layernorm",
204
+ "model.layers.84.self_attn.q_proj.bias",
205
+ "model.layers.36.self_attn.k_proj.bias",
206
+ "model.layers.30.self_attn.v_proj.bias",
207
+ "model.layers.48.self_attn.k_norm",
208
+ "model.layers.62.mlp.gate",
209
+ "model.layers.8.mlp.gate",
210
+ "model.layers.11.mlp.gate.e_score_correction_bias",
211
+ "model.layers.28.mlp.gate",
212
+ "model.layers.30.mlp.gate.e_score_correction_bias",
213
+ "model.layers.43.input_layernorm",
214
+ "model.layers.3.self_attn.q_proj.bias",
215
+ "model.layers.88.input_layernorm",
216
+ "model.layers.5.post_attention_layernorm",
217
+ "model.layers.35.self_attn.k_norm",
218
+ "model.layers.56.post_attention_layernorm",
219
+ "model.layers.30.mlp.gate",
220
+ "model.layers.67.self_attn.q_proj.bias",
221
+ "model.layers.58.post_attention_layernorm",
222
+ "model.layers.80.post_attention_layernorm",
223
+ "model.layers.88.self_attn.v_proj.bias",
224
+ "model.layers.90.self_attn.v_proj.bias",
225
+ "model.layers.2.self_attn.k_norm",
226
+ "model.layers.67.mlp.gate.e_score_correction_bias",
227
+ "model.layers.31.input_layernorm",
228
+ "model.layers.26.post_attention_layernorm",
229
+ "model.layers.81.self_attn.k_proj.bias",
230
+ "model.layers.51.self_attn.q_norm",
231
+ "model.layers.7.self_attn.k_proj.bias",
232
+ "model.layers.76.self_attn.q_proj.bias",
233
+ "model.layers.1.self_attn.k_norm",
234
+ "model.layers.34.mlp.gate.e_score_correction_bias",
235
+ "model.layers.80.self_attn.k_proj.bias",
236
+ "model.layers.0.self_attn.k_norm",
237
+ "model.layers.44.self_attn.q_norm",
238
+ "model.layers.29.input_layernorm",
239
+ "model.layers.77.self_attn.v_proj.bias",
240
+ "model.layers.73.mlp.gate",
241
+ "model.layers.31.self_attn.v_proj.bias",
242
+ "model.layers.46.self_attn.q_proj.bias",
243
+ "model.layers.62.self_attn.k_norm",
244
+ "model.layers.87.self_attn.k_proj.bias",
245
+ "model.layers.58.self_attn.k_norm",
246
+ "model.layers.66.mlp.gate.e_score_correction_bias",
247
+ "model.layers.32.mlp.gate.e_score_correction_bias",
248
+ "model.layers.73.self_attn.k_proj.bias",
249
+ "model.layers.85.mlp.gate.e_score_correction_bias",
250
+ "model.layers.23.mlp.gate",
251
+ "model.layers.72.self_attn.q_proj.bias",
252
+ "model.layers.25.mlp.gate",
253
+ "model.layers.43.mlp.gate.e_score_correction_bias",
254
+ "model.layers.50.mlp.gate.e_score_correction_bias",
255
+ "model.layers.6.mlp.gate.e_score_correction_bias",
256
+ "model.layers.14.mlp.gate",
257
+ "model.layers.50.self_attn.v_proj.bias",
258
+ "model.layers.33.self_attn.k_norm",
259
+ "model.layers.92.self_attn.q_proj.bias",
260
+ "model.layers.6.self_attn.k_proj.bias",
261
+ "model.layers.43.mlp.gate",
262
+ "model.layers.68.self_attn.q_proj.bias",
263
+ "model.layers.33.self_attn.v_proj.bias",
264
+ "model.layers.41.self_attn.k_norm",
265
+ "model.layers.32.self_attn.k_norm",
266
+ "model.layers.28.post_attention_layernorm",
267
+ "model.layers.61.self_attn.v_proj.bias",
268
+ "model.layers.16.post_attention_layernorm",
269
+ "model.layers.48.mlp.gate.e_score_correction_bias",
270
+ "model.layers.4.self_attn.v_proj.bias",
271
+ "model.layers.88.self_attn.k_norm",
272
+ "model.layers.68.self_attn.k_norm",
273
+ "model.layers.77.self_attn.q_proj.bias",
274
+ "model.layers.8.self_attn.v_proj.bias",
275
+ "model.layers.20.mlp.gate.e_score_correction_bias",
276
+ "model.layers.86.self_attn.k_norm",
277
+ "model.layers.36.self_attn.v_proj.bias",
278
+ "model.layers.71.input_layernorm",
279
+ "model.layers.72.mlp.gate",
280
+ "model.layers.24.self_attn.k_norm",
281
+ "model.layers.20.self_attn.q_norm",
282
+ "model.layers.62.post_attention_layernorm",
283
+ "model.layers.3.self_attn.v_proj.bias",
284
+ "model.layers.25.input_layernorm",
285
+ "model.layers.20.self_attn.v_proj.bias",
286
+ "model.layers.64.self_attn.v_proj.bias",
287
+ "model.layers.19.self_attn.k_proj.bias",
288
+ "model.layers.63.mlp.gate.e_score_correction_bias",
289
+ "model.layers.92.embed_tokens",
290
+ "model.layers.62.self_attn.q_proj.bias",
291
+ "model.layers.69.self_attn.q_norm",
292
+ "model.layers.9.mlp.gate",
293
+ "model.layers.62.mlp.gate.e_score_correction_bias",
294
+ "model.layers.35.self_attn.k_proj.bias",
295
+ "model.layers.1.self_attn.q_proj.bias",
296
+ "model.layers.40.self_attn.q_norm",
297
+ "model.layers.26.input_layernorm",
298
+ "model.layers.50.self_attn.k_proj.bias",
299
+ "model.layers.39.input_layernorm",
300
+ "model.layers.28.self_attn.k_proj.bias",
301
+ "model.layers.39.self_attn.q_proj.bias",
302
+ "model.layers.5.mlp.gate",
303
+ "model.layers.56.input_layernorm",
304
+ "model.layers.60.self_attn.k_norm",
305
+ "model.layers.76.self_attn.q_norm",
306
+ "lm_head",
307
+ "model.layers.69.self_attn.k_norm",
308
+ "model.layers.23.self_attn.q_proj.bias",
309
+ "model.layers.58.self_attn.q_proj.bias",
310
+ "model.norm",
311
+ "model.layers.53.self_attn.k_proj.bias",
312
+ "model.layers.73.self_attn.v_proj.bias",
313
+ "model.layers.33.self_attn.q_proj.bias",
314
+ "model.layers.64.input_layernorm",
315
+ "model.layers.15.mlp.gate",
316
+ "model.layers.55.self_attn.q_proj.bias",
317
+ "model.layers.55.self_attn.k_norm",
318
+ "model.layers.27.mlp.gate.e_score_correction_bias",
319
+ "model.layers.68.input_layernorm",
320
+ "model.layers.30.self_attn.q_norm",
321
+ "model.layers.82.post_attention_layernorm",
322
+ "model.layers.29.self_attn.q_proj.bias",
323
+ "model.layers.79.self_attn.k_proj.bias",
324
+ "model.layers.16.self_attn.k_proj.bias",
325
+ "model.layers.71.self_attn.k_norm",
326
+ "model.layers.16.self_attn.k_norm",
327
+ "model.layers.75.self_attn.k_proj.bias",
328
+ "model.layers.52.self_attn.q_norm",
329
+ "model.layers.87.self_attn.v_proj.bias",
330
+ "model.layers.23.self_attn.k_proj.bias",
331
+ "model.layers.24.post_attention_layernorm",
332
+ "model.layers.40.self_attn.q_proj.bias",
333
+ "model.layers.46.mlp.gate.e_score_correction_bias",
334
+ "model.layers.54.input_layernorm",
335
+ "model.layers.75.post_attention_layernorm",
336
+ "model.layers.72.self_attn.k_proj.bias",
337
+ "model.layers.82.self_attn.q_proj.bias",
338
+ "model.layers.75.mlp.gate.e_score_correction_bias",
339
+ "model.layers.27.self_attn.q_norm",
340
+ "model.layers.39.self_attn.q_norm",
341
+ "model.layers.45.self_attn.k_proj.bias",
342
+ "model.layers.90.self_attn.k_proj.bias",
343
+ "model.layers.65.self_attn.q_proj.bias",
344
+ "model.layers.5.self_attn.k_norm",
345
+ "model.layers.89.self_attn.q_proj.bias",
346
+ "model.layers.10.self_attn.k_proj.bias",
347
+ "model.layers.86.self_attn.v_proj.bias",
348
+ "model.layers.89.mlp.gate.e_score_correction_bias",
349
+ "model.layers.42.self_attn.k_norm",
350
+ "model.layers.57.self_attn.k_proj.bias",
351
+ "model.layers.68.post_attention_layernorm",
352
+ "model.layers.1.self_attn.v_proj.bias",
353
+ "model.layers.38.self_attn.k_proj.bias",
354
+ "model.layers.75.self_attn.v_proj.bias",
355
+ "model.layers.44.self_attn.q_proj.bias",
356
+ "model.layers.8.mlp.gate.e_score_correction_bias",
357
+ "model.layers.55.input_layernorm",
358
+ "model.layers.7.self_attn.v_proj.bias",
359
+ "model.layers.51.self_attn.k_norm",
360
+ "model.layers.19.mlp.gate",
361
+ "model.layers.12.self_attn.q_norm",
362
+ "model.layers.78.self_attn.k_norm",
363
+ "model.layers.61.self_attn.q_norm",
364
+ "model.layers.18.mlp.gate",
365
+ "model.layers.8.self_attn.q_norm",
366
+ "model.layers.7.self_attn.k_norm",
367
+ "model.layers.84.self_attn.q_norm",
368
+ "model.layers.44.self_attn.k_proj.bias",
369
+ "model.layers.38.self_attn.q_proj.bias",
370
+ "model.layers.37.mlp.gate.e_score_correction_bias",
371
+ "model.layers.34.mlp.gate",
372
+ "model.layers.92.eh_proj",
373
+ "model.layers.75.self_attn.q_proj.bias",
374
+ "model.layers.61.mlp.gate.e_score_correction_bias",
375
+ "model.layers.33.mlp.gate.e_score_correction_bias",
376
+ "model.layers.81.mlp.gate.e_score_correction_bias",
377
+ "model.layers.47.self_attn.k_proj.bias",
378
+ "model.layers.72.self_attn.q_norm",
379
+ "model.layers.62.self_attn.k_proj.bias",
380
+ "model.layers.33.self_attn.q_norm",
381
+ "model.layers.24.mlp.gate",
382
+ "model.layers.51.input_layernorm",
383
+ "model.layers.42.self_attn.k_proj.bias",
384
+ "model.layers.43.self_attn.k_norm",
385
+ "model.layers.46.self_attn.k_proj.bias",
386
+ "model.layers.66.input_layernorm",
387
+ "model.layers.31.mlp.gate.e_score_correction_bias",
388
+ "model.layers.77.post_attention_layernorm",
389
+ "model.layers.52.self_attn.k_norm",
390
+ "model.layers.4.mlp.gate",
391
+ "model.layers.51.post_attention_layernorm",
392
+ "model.layers.15.self_attn.k_norm",
393
+ "model.layers.60.self_attn.k_proj.bias",
394
+ "model.layers.6.self_attn.q_norm",
395
+ "model.layers.85.mlp.gate",
396
+ "model.layers.66.self_attn.k_norm",
397
+ "model.layers.22.self_attn.v_proj.bias",
398
+ "model.layers.36.self_attn.k_norm",
399
+ "model.layers.8.input_layernorm",
400
+ "model.layers.19.mlp.gate.e_score_correction_bias",
401
+ "model.layers.25.self_attn.k_proj.bias",
402
+ "model.layers.31.self_attn.q_norm",
403
+ "model.layers.16.mlp.gate.e_score_correction_bias",
404
+ "model.layers.57.self_attn.v_proj.bias",
405
+ "model.layers.35.mlp.gate",
406
+ "model.layers.75.input_layernorm",
407
+ "model.layers.2.self_attn.v_proj.bias",
408
+ "model.layers.9.self_attn.v_proj.bias",
409
+ "model.layers.80.self_attn.q_proj.bias",
410
+ "model.layers.19.self_attn.v_proj.bias",
411
+ "model.layers.4.post_attention_layernorm",
412
+ "model.layers.65.input_layernorm",
413
+ "model.layers.82.mlp.gate.e_score_correction_bias",
414
+ "model.layers.69.post_attention_layernorm",
415
+ "model.layers.21.self_attn.q_norm",
416
+ "model.layers.18.post_attention_layernorm",
417
+ "model.layers.81.self_attn.q_proj.bias",
418
+ "model.layers.77.input_layernorm",
419
+ "model.layers.17.self_attn.q_norm",
420
+ "model.layers.80.input_layernorm",
421
+ "model.layers.13.mlp.gate.e_score_correction_bias",
422
+ "model.layers.0.post_attention_layernorm",
423
+ "model.layers.19.post_attention_layernorm",
424
+ "model.layers.91.self_attn.v_proj.bias",
425
+ "model.layers.77.mlp.gate",
426
+ "model.layers.11.self_attn.q_norm",
427
+ "model.layers.92.hnorm",
428
+ "model.layers.11.self_attn.q_proj.bias",
429
+ "model.layers.47.self_attn.q_norm",
430
+ "model.layers.42.self_attn.v_proj.bias",
431
+ "model.layers.90.input_layernorm",
432
+ "model.layers.78.input_layernorm",
433
+ "model.layers.11.self_attn.v_proj.bias",
434
+ "model.layers.80.self_attn.q_norm",
435
+ "model.layers.83.input_layernorm",
436
+ "model.layers.43.self_attn.q_norm",
437
+ "model.layers.91.post_attention_layernorm",
438
+ "model.layers.50.mlp.gate",
439
+ "model.layers.48.self_attn.k_proj.bias",
440
+ "model.layers.70.mlp.gate.e_score_correction_bias",
441
+ "model.layers.14.self_attn.q_proj.bias",
442
+ "model.layers.31.self_attn.k_proj.bias",
443
+ "model.layers.47.self_attn.v_proj.bias",
444
+ "model.layers.12.self_attn.k_proj.bias",
445
+ "model.layers.12.mlp.gate",
446
+ "model.layers.34.self_attn.q_norm",
447
+ "model.layers.62.self_attn.v_proj.bias",
448
+ "model.layers.26.mlp.gate.e_score_correction_bias",
449
+ "model.layers.45.mlp.gate.e_score_correction_bias",
450
+ "model.layers.77.self_attn.q_norm",
451
+ "model.layers.47.self_attn.k_norm",
452
+ "model.layers.53.post_attention_layernorm",
453
+ "model.layers.7.post_attention_layernorm",
454
+ "model.layers.90.post_attention_layernorm",
455
+ "model.layers.40.mlp.gate.e_score_correction_bias",
456
+ "model.layers.63.input_layernorm",
457
+ "model.layers.52.mlp.gate.e_score_correction_bias",
458
+ "model.layers.92.input_layernorm",
459
+ "model.layers.44.self_attn.v_proj.bias",
460
+ "model.layers.46.mlp.gate",
461
+ "model.layers.18.self_attn.k_proj.bias",
462
+ "model.layers.62.input_layernorm",
463
+ "model.layers.24.self_attn.v_proj.bias",
464
+ "model.layers.40.post_attention_layernorm",
465
+ "model.layers.8.post_attention_layernorm",
466
+ "model.layers.82.mlp.gate",
467
+ "model.layers.17.post_attention_layernorm",
468
+ "model.layers.45.self_attn.v_proj.bias",
469
+ "model.layers.84.self_attn.k_proj.bias",
470
+ "model.layers.15.self_attn.k_proj.bias",
471
+ "model.layers.0.self_attn.q_proj.bias",
472
+ "model.layers.92.shared_head.norm",
473
+ "model.layers.51.self_attn.q_proj.bias",
474
+ "model.layers.22.mlp.gate",
475
+ "model.layers.4.self_attn.k_norm",
476
+ "model.layers.84.input_layernorm",
477
+ "model.layers.30.self_attn.k_proj.bias",
478
+ "model.layers.12.self_attn.v_proj.bias",
479
+ "model.layers.37.input_layernorm",
480
+ "model.layers.37.self_attn.q_norm",
481
+ "model.layers.45.self_attn.q_norm",
482
+ "model.layers.72.self_attn.v_proj.bias",
483
+ "model.layers.64.self_attn.k_norm",
484
+ "model.layers.43.self_attn.k_proj.bias",
485
+ "model.layers.38.mlp.gate.e_score_correction_bias",
486
+ "model.layers.79.input_layernorm",
487
+ "model.layers.48.mlp.gate",
488
+ "model.layers.52.self_attn.q_proj.bias",
489
+ "model.layers.46.self_attn.v_proj.bias",
490
+ "model.layers.81.mlp.gate",
491
+ "model.layers.71.self_attn.q_proj.bias",
492
+ "model.layers.50.self_attn.k_norm",
493
+ "model.layers.18.self_attn.v_proj.bias",
494
+ "model.layers.53.input_layernorm",
495
+ "model.layers.64.self_attn.q_proj.bias",
496
+ "model.layers.12.self_attn.k_norm",
497
+ "model.embed_tokens",
498
+ "model.layers.78.self_attn.k_proj.bias",
499
+ "model.layers.40.self_attn.k_norm",
500
+ "model.layers.11.input_layernorm",
501
+ "model.layers.22.input_layernorm",
502
+ "model.layers.39.mlp.gate",
503
+ "model.layers.30.self_attn.k_norm",
504
+ "model.layers.71.mlp.gate",
505
+ "model.layers.71.post_attention_layernorm",
506
+ "model.layers.78.self_attn.q_norm",
507
+ "model.layers.87.mlp.gate",
508
+ "model.layers.14.self_attn.q_norm",
509
+ "model.layers.42.post_attention_layernorm",
510
+ "model.layers.3.post_attention_layernorm",
511
+ "model.layers.92.self_attn.k_proj.bias",
512
+ "model.layers.3.mlp.gate",
513
+ "model.layers.89.mlp.gate",
514
+ "model.layers.86.self_attn.k_proj.bias",
515
+ "model.layers.87.self_attn.q_proj.bias",
516
+ "model.layers.63.self_attn.k_proj.bias",
517
+ "model.layers.87.input_layernorm",
518
+ "model.layers.10.self_attn.q_proj.bias",
519
+ "model.layers.81.post_attention_layernorm",
520
+ "model.layers.39.self_attn.v_proj.bias",
521
+ "model.layers.43.post_attention_layernorm",
522
+ "model.layers.76.mlp.gate",
523
+ "model.layers.28.self_attn.v_proj.bias",
524
+ "model.layers.57.self_attn.q_proj.bias",
525
+ "model.layers.21.mlp.gate.e_score_correction_bias",
526
+ "model.layers.75.self_attn.q_norm",
527
+ "model.layers.58.self_attn.k_proj.bias",
528
+ "model.layers.52.input_layernorm",
529
+ "model.layers.0.self_attn.k_proj.bias",
530
+ "model.layers.78.mlp.gate.e_score_correction_bias",
531
+ "model.layers.85.self_attn.k_norm",
532
+ "model.layers.42.self_attn.q_norm",
533
+ "model.layers.25.self_attn.v_proj.bias",
534
+ "model.layers.36.post_attention_layernorm",
535
+ "model.layers.4.self_attn.q_norm",
536
+ "model.layers.16.self_attn.q_norm",
537
+ "model.layers.41.self_attn.k_proj.bias",
538
+ "model.layers.5.self_attn.q_proj.bias",
539
+ "model.layers.28.self_attn.q_norm",
540
+ "model.layers.41.self_attn.q_proj.bias",
541
+ "model.layers.68.mlp.gate.e_score_correction_bias",
542
+ "model.layers.26.self_attn.k_proj.bias",
543
+ "model.layers.86.input_layernorm",
544
+ "model.layers.35.mlp.gate.e_score_correction_bias",
545
+ "model.layers.69.input_layernorm",
546
+ "model.layers.77.mlp.gate.e_score_correction_bias",
547
+ "model.layers.10.self_attn.q_norm",
548
+ "model.layers.32.post_attention_layernorm",
549
+ "model.layers.54.self_attn.q_norm",
550
+ "model.layers.45.post_attention_layernorm",
551
+ "model.layers.45.input_layernorm",
552
+ "model.layers.15.post_attention_layernorm",
553
+ "model.layers.64.post_attention_layernorm",
554
+ "model.layers.15.self_attn.v_proj.bias",
555
+ "model.layers.24.self_attn.k_proj.bias",
556
+ "model.layers.64.self_attn.k_proj.bias",
557
+ "model.layers.14.post_attention_layernorm",
558
+ "model.layers.40.mlp.gate",
559
+ "model.layers.50.input_layernorm",
560
+ "model.layers.21.self_attn.v_proj.bias",
561
+ "model.layers.66.self_attn.q_proj.bias",
562
+ "model.layers.78.mlp.gate",
563
+ "model.layers.2.self_attn.q_proj.bias",
564
+ "model.layers.12.self_attn.q_proj.bias",
565
+ "model.layers.7.mlp.gate",
566
+ "model.layers.35.post_attention_layernorm",
567
+ "model.layers.52.post_attention_layernorm",
568
+ "model.layers.30.post_attention_layernorm",
569
+ "model.layers.59.input_layernorm",
570
+ "model.layers.86.post_attention_layernorm",
571
+ "model.layers.0.self_attn.v_proj.bias",
572
+ "model.layers.24.mlp.gate.e_score_correction_bias",
573
+ "model.layers.34.self_attn.k_norm",
574
+ "model.layers.4.self_attn.k_proj.bias",
575
+ "model.layers.74.self_attn.q_proj.bias",
576
+ "model.layers.78.self_attn.v_proj.bias",
577
+ "model.layers.49.self_attn.q_proj.bias",
578
+ "model.layers.53.mlp.gate.e_score_correction_bias",
579
+ "model.layers.60.self_attn.v_proj.bias",
580
+ "model.layers.59.mlp.gate",
581
+ "model.layers.61.mlp.gate",
582
+ "model.layers.26.self_attn.q_norm",
583
+ "model.layers.1.input_layernorm",
584
+ "model.layers.33.mlp.gate",
585
+ "model.layers.91.mlp.gate",
586
+ "model.layers.26.self_attn.q_proj.bias",
587
+ "model.layers.83.mlp.gate",
588
+ "model.layers.12.mlp.gate.e_score_correction_bias",
589
+ "model.layers.36.self_attn.q_norm",
590
+ "model.layers.91.mlp.gate.e_score_correction_bias",
591
+ "model.layers.25.self_attn.q_norm",
592
+ "model.layers.91.self_attn.k_norm",
593
+ "model.layers.20.self_attn.k_norm",
594
+ "model.layers.8.self_attn.k_proj.bias",
595
+ "model.layers.29.self_attn.v_proj.bias",
596
+ "model.layers.82.self_attn.k_proj.bias",
597
+ "model.layers.89.post_attention_layernorm",
598
+ "model.layers.29.self_attn.k_norm",
599
+ "model.layers.88.self_attn.q_norm",
600
+ "model.layers.48.self_attn.q_proj.bias",
601
+ "model.layers.22.self_attn.k_norm",
602
+ "model.layers.27.self_attn.q_proj.bias",
603
+ "model.layers.23.mlp.gate.e_score_correction_bias",
604
+ "model.layers.1.post_attention_layernorm",
605
+ "model.layers.29.post_attention_layernorm",
606
+ "model.layers.58.mlp.gate",
607
+ "model.layers.27.input_layernorm",
608
+ "model.layers.66.self_attn.k_proj.bias",
609
+ "model.layers.87.mlp.gate.e_score_correction_bias",
610
+ "model.layers.22.self_attn.q_norm",
611
+ "model.layers.4.mlp.gate.e_score_correction_bias",
612
+ "model.layers.51.mlp.gate",
613
+ "model.layers.90.mlp.gate.e_score_correction_bias",
614
+ "model.layers.3.self_attn.q_norm",
615
+ "model.layers.33.input_layernorm",
616
+ "model.layers.91.self_attn.k_proj.bias",
617
+ "model.layers.8.self_attn.q_proj.bias",
618
+ "model.layers.12.post_attention_layernorm",
619
+ "model.layers.3.mlp.gate.e_score_correction_bias",
620
+ "model.layers.69.mlp.gate.e_score_correction_bias",
621
+ "model.layers.17.self_attn.k_proj.bias",
622
+ "model.layers.82.self_attn.k_norm",
623
+ "model.layers.10.post_attention_layernorm",
624
+ "model.layers.84.mlp.gate",
625
+ "model.layers.6.input_layernorm",
626
+ "model.layers.70.mlp.gate",
627
+ "model.layers.33.post_attention_layernorm",
628
+ "model.layers.31.self_attn.k_norm",
629
+ "model.layers.88.self_attn.q_proj.bias",
630
+ "model.layers.80.self_attn.k_norm",
631
+ "model.layers.36.mlp.gate.e_score_correction_bias",
632
+ "model.layers.56.self_attn.v_proj.bias",
633
+ "model.layers.1.self_attn.k_proj.bias",
634
+ "model.layers.44.self_attn.k_norm",
635
+ "model.layers.60.mlp.gate.e_score_correction_bias",
636
+ "model.layers.32.self_attn.k_proj.bias",
637
+ "model.layers.69.self_attn.k_proj.bias",
638
+ "model.layers.4.input_layernorm",
639
+ "model.layers.15.self_attn.q_norm",
640
+ "model.layers.79.self_attn.k_norm",
641
+ "model.layers.4.self_attn.q_proj.bias",
642
+ "model.layers.51.mlp.gate.e_score_correction_bias",
643
+ "model.layers.57.self_attn.k_norm",
644
+ "model.layers.90.self_attn.k_norm",
645
+ "model.layers.27.self_attn.k_norm",
646
+ "model.layers.50.post_attention_layernorm",
647
+ "model.layers.21.self_attn.q_proj.bias",
648
+ "model.layers.10.input_layernorm",
649
+ "model.layers.64.self_attn.q_norm",
650
+ "model.layers.67.self_attn.k_proj.bias",
651
+ "model.layers.85.self_attn.v_proj.bias",
652
+ "model.layers.14.mlp.gate.e_score_correction_bias",
653
+ "model.layers.32.mlp.gate",
654
+ "model.layers.67.self_attn.v_proj.bias",
655
+ "model.layers.26.self_attn.k_norm",
656
+ "model.layers.19.self_attn.q_norm",
657
+ "model.layers.22.mlp.gate.e_score_correction_bias",
658
+ "model.layers.68.self_attn.q_norm",
659
+ "model.layers.86.mlp.gate.e_score_correction_bias",
660
+ "model.layers.20.post_attention_layernorm",
661
+ "model.layers.21.post_attention_layernorm",
662
+ "model.layers.49.self_attn.v_proj.bias",
663
+ "model.layers.38.mlp.gate",
664
+ "model.layers.82.self_attn.v_proj.bias",
665
+ "model.layers.42.mlp.gate",
666
+ "model.layers.21.input_layernorm",
667
+ "model.layers.22.self_attn.k_proj.bias",
668
+ "model.layers.54.self_attn.q_proj.bias",
669
+ "model.layers.76.post_attention_layernorm",
670
+ "model.layers.67.input_layernorm",
671
+ "model.layers.65.self_attn.v_proj.bias",
672
+ "model.layers.67.self_attn.q_norm",
673
+ "model.layers.79.self_attn.q_norm",
674
+ "model.layers.47.input_layernorm",
675
+ "model.layers.79.mlp.gate.e_score_correction_bias",
676
+ "model.layers.76.self_attn.k_norm",
677
+ "model.layers.60.mlp.gate",
678
+ "model.layers.20.self_attn.q_proj.bias",
679
+ "model.layers.11.post_attention_layernorm",
680
+ "model.layers.24.self_attn.q_norm",
681
+ "model.layers.53.self_attn.k_norm",
682
+ "model.layers.53.self_attn.q_proj.bias",
683
+ "model.layers.75.self_attn.k_norm",
684
+ "model.layers.28.self_attn.q_proj.bias",
685
+ "model.layers.65.self_attn.q_norm",
686
+ "model.layers.39.self_attn.k_proj.bias",
687
+ "model.layers.85.input_layernorm",
688
+ "model.layers.17.self_attn.q_proj.bias",
689
+ "model.layers.65.post_attention_layernorm",
690
+ "model.layers.68.mlp.gate",
691
+ "model.layers.13.self_attn.q_norm",
692
+ "model.layers.81.self_attn.v_proj.bias",
693
+ "model.layers.58.self_attn.q_norm",
694
+ "model.layers.34.input_layernorm",
695
+ "model.layers.25.self_attn.q_proj.bias",
696
+ "model.layers.77.self_attn.k_proj.bias",
697
+ "model.layers.39.mlp.gate.e_score_correction_bias",
698
+ "model.layers.0.input_layernorm",
699
+ "model.layers.76.self_attn.v_proj.bias",
700
+ "model.layers.6.self_attn.k_norm",
701
+ "model.layers.74.self_attn.k_proj.bias",
702
+ "model.layers.92.self_attn.k_norm",
703
+ "model.layers.37.self_attn.k_proj.bias",
704
+ "model.layers.18.self_attn.k_norm",
705
+ "model.layers.48.self_attn.q_norm",
706
+ "model.layers.84.self_attn.v_proj.bias",
707
+ "model.layers.47.mlp.gate.e_score_correction_bias",
708
+ "model.layers.49.self_attn.q_norm",
709
+ "model.layers.51.self_attn.v_proj.bias",
710
+ "model.layers.61.input_layernorm",
711
+ "model.layers.28.self_attn.k_norm",
712
+ "model.layers.32.self_attn.v_proj.bias",
713
+ "model.layers.55.self_attn.q_norm",
714
+ "model.layers.55.self_attn.k_proj.bias",
715
+ "model.layers.47.post_attention_layernorm",
716
+ "model.layers.69.self_attn.q_proj.bias",
717
+ "model.layers.28.input_layernorm",
718
+ "model.layers.40.self_attn.v_proj.bias",
719
+ "model.layers.19.input_layernorm",
720
+ "model.layers.83.self_attn.q_proj.bias",
721
+ "model.layers.66.self_attn.v_proj.bias",
722
+ "model.layers.59.mlp.gate.e_score_correction_bias",
723
+ "model.layers.23.self_attn.v_proj.bias",
724
+ "model.layers.0.self_attn.q_norm",
725
+ "model.layers.5.mlp.gate.e_score_correction_bias",
726
+ "model.layers.37.self_attn.v_proj.bias",
727
+ "model.layers.2.post_attention_layernorm",
728
+ "model.layers.5.self_attn.v_proj.bias",
729
+ "model.layers.34.self_attn.k_proj.bias",
730
+ "model.layers.38.self_attn.v_proj.bias",
731
+ "model.layers.81.self_attn.k_norm",
732
+ "model.layers.32.input_layernorm",
733
+ "model.layers.10.self_attn.k_norm",
734
+ "model.layers.54.self_attn.k_norm",
735
+ "model.layers.70.input_layernorm",
736
+ "model.layers.41.self_attn.v_proj.bias",
737
+ "model.layers.74.post_attention_layernorm",
738
+ "model.layers.35.input_layernorm",
739
+ "model.layers.7.mlp.gate.e_score_correction_bias",
740
+ "model.layers.6.post_attention_layernorm",
741
+ "model.layers.86.mlp.gate",
742
+ "model.layers.20.mlp.gate",
743
+ "model.layers.31.mlp.gate",
744
+ "model.layers.2.self_attn.q_norm",
745
+ "model.layers.23.self_attn.q_norm",
746
+ "model.layers.6.self_attn.q_proj.bias",
747
+ "model.layers.83.self_attn.k_norm",
748
+ "model.layers.38.input_layernorm",
749
+ "model.layers.60.self_attn.q_norm",
750
+ "model.layers.91.self_attn.q_norm",
751
+ "model.layers.44.input_layernorm",
752
+ "model.layers.67.post_attention_layernorm",
753
+ "model.layers.27.self_attn.v_proj.bias",
754
+ "model.layers.15.input_layernorm",
755
+ "model.layers.26.self_attn.v_proj.bias",
756
+ "model.layers.44.post_attention_layernorm",
757
+ "model.layers.46.self_attn.q_norm",
758
+ "model.layers.58.self_attn.v_proj.bias",
759
+ "model.layers.67.self_attn.k_norm",
760
+ "model.layers.38.self_attn.k_norm",
761
+ "model.layers.56.mlp.gate.e_score_correction_bias",
762
+ "model.layers.73.self_attn.k_norm",
763
+ "model.layers.80.mlp.gate.e_score_correction_bias",
764
+ "model.layers.37.self_attn.q_proj.bias",
765
+ "model.layers.17.mlp.gate",
766
+ "model.layers.19.self_attn.k_norm",
767
+ "model.layers.53.mlp.gate",
768
+ "model.layers.21.self_attn.k_proj.bias",
769
+ "model.layers.56.self_attn.q_norm",
770
+ "model.layers.59.self_attn.v_proj.bias",
771
+ "model.layers.64.mlp.gate.e_score_correction_bias",
772
+ "model.layers.86.self_attn.q_proj.bias",
773
+ "model.layers.46.input_layernorm",
774
+ "model.layers.6.mlp.gate",
775
+ "model.layers.40.self_attn.k_proj.bias",
776
+ "model.layers.60.self_attn.q_proj.bias",
777
+ "model.layers.6.self_attn.v_proj.bias",
778
+ "model.layers.47.mlp.gate",
779
+ "model.layers.32.self_attn.q_proj.bias",
780
+ "model.layers.17.mlp.gate.e_score_correction_bias",
781
+ "model.layers.29.self_attn.k_proj.bias",
782
+ "model.layers.44.mlp.gate.e_score_correction_bias",
783
+ "model.layers.57.mlp.gate.e_score_correction_bias",
784
+ "model.layers.87.self_attn.q_norm",
785
+ "model.layers.71.self_attn.q_norm",
786
+ "model.layers.52.self_attn.k_proj.bias",
787
+ "model.layers.88.mlp.gate.e_score_correction_bias",
788
+ "model.layers.68.self_attn.k_proj.bias",
789
+ "model.layers.16.self_attn.q_proj.bias",
790
+ "model.layers.48.self_attn.v_proj.bias",
791
+ "model.layers.74.self_attn.q_norm",
792
+ "model.layers.34.self_attn.q_proj.bias",
793
+ "model.layers.1.self_attn.q_norm",
794
+ "model.layers.63.mlp.gate",
795
+ "model.layers.92.enorm",
796
+ "model.layers.14.self_attn.v_proj.bias",
797
+ "model.layers.54.post_attention_layernorm",
798
+ "model.layers.41.self_attn.q_norm",
799
+ "model.layers.37.post_attention_layernorm",
800
+ "model.layers.61.self_attn.q_proj.bias",
801
+ "model.layers.91.input_layernorm",
802
+ "model.layers.11.self_attn.k_norm",
803
+ "model.layers.43.self_attn.q_proj.bias",
804
+ "model.layers.18.mlp.gate.e_score_correction_bias",
805
+ "model.layers.59.post_attention_layernorm",
806
+ "model.layers.9.self_attn.q_norm",
807
+ "model.layers.74.self_attn.k_norm",
808
+ "model.layers.43.self_attn.v_proj.bias",
809
+ "model.layers.49.self_attn.k_proj.bias",
810
+ "model.layers.56.self_attn.k_proj.bias",
811
+ "model.layers.14.self_attn.k_proj.bias",
812
+ "model.layers.65.mlp.gate",
813
+ "model.layers.56.self_attn.q_proj.bias",
814
+ "model.layers.24.self_attn.q_proj.bias",
815
+ "model.layers.71.self_attn.v_proj.bias",
816
+ "model.layers.54.mlp.gate.e_score_correction_bias",
817
+ "model.layers.39.post_attention_layernorm",
818
+ "model.layers.91.self_attn.q_proj.bias",
819
+ "model.layers.92.mlp.gate.e_score_correction_bias",
820
+ "model.layers.46.post_attention_layernorm",
821
+ "model.layers.92.self_attn.v_proj.bias",
822
+ "model.layers.63.self_attn.v_proj.bias",
823
+ "model.layers.25.post_attention_layernorm",
824
+ "model.layers.45.self_attn.q_proj.bias",
825
+ "model.layers.38.self_attn.q_norm",
826
+ "model.layers.68.self_attn.v_proj.bias",
827
+ "model.layers.69.mlp.gate",
828
+ "model.layers.84.self_attn.k_norm",
829
+ "model.layers.19.self_attn.q_proj.bias",
830
+ "model.layers.38.post_attention_layernorm",
831
+ "model.layers.44.mlp.gate",
832
+ "model.layers.70.post_attention_layernorm",
833
+ "model.layers.58.mlp.gate.e_score_correction_bias",
834
+ "model.layers.28.mlp.gate.e_score_correction_bias",
835
+ "model.layers.48.post_attention_layernorm",
836
+ "model.layers.36.self_attn.q_proj.bias",
837
+ "model.layers.66.self_attn.q_norm",
838
+ "model.layers.70.self_attn.k_proj.bias",
839
+ "model.layers.57.input_layernorm",
840
+ "model.layers.42.self_attn.q_proj.bias",
841
+ "model.layers.26.mlp.gate",
842
+ "model.layers.74.self_attn.v_proj.bias",
843
+ "model.layers.59.self_attn.k_proj.bias",
844
+ "model.layers.88.mlp.gate",
845
+ "model.layers.14.self_attn.k_norm",
846
+ "model.layers.88.self_attn.k_proj.bias",
847
+ "model.layers.35.self_attn.q_proj.bias",
848
+ "model.layers.65.self_attn.k_proj.bias",
849
+ "model.layers.18.self_attn.q_proj.bias",
850
+ "model.layers.30.self_attn.q_proj.bias",
851
+ "model.layers.29.self_attn.q_norm",
852
+ "model.layers.78.post_attention_layernorm",
853
+ "model.layers.79.mlp.gate",
854
+ "model.layers.27.post_attention_layernorm",
855
+ "model.layers.80.self_attn.v_proj.bias",
856
+ "model.layers.16.mlp.gate",
857
+ "model.layers.10.self_attn.v_proj.bias",
858
+ "model.layers.13.self_attn.v_proj.bias",
859
+ "model.layers.70.self_attn.q_norm",
860
+ "model.layers.73.mlp.gate.e_score_correction_bias",
861
+ "model.layers.41.post_attention_layernorm",
862
+ "model.layers.39.self_attn.k_norm",
863
+ "model.layers.10.mlp.gate",
864
+ "model.layers.36.mlp.gate",
865
+ "model.layers.92.post_attention_layernorm",
866
+ "model.layers.64.mlp.gate",
867
+ "model.layers.40.input_layernorm",
868
+ "model.layers.77.self_attn.k_norm",
869
+ "model.layers.31.post_attention_layernorm",
870
+ "model.layers.56.mlp.gate",
871
+ "model.layers.16.self_attn.v_proj.bias",
872
+ "model.layers.9.self_attn.q_proj.bias",
873
+ "model.layers.13.mlp.gate",
874
+ "model.layers.17.self_attn.k_norm",
875
+ "model.layers.22.self_attn.q_proj.bias",
876
+ "model.layers.49.mlp.gate.e_score_correction_bias",
877
+ "model.layers.9.self_attn.k_proj.bias",
878
+ "model.layers.37.mlp.gate",
879
+ "model.layers.72.mlp.gate.e_score_correction_bias",
880
+ "model.layers.90.self_attn.q_norm",
881
+ "model.layers.79.self_attn.q_proj.bias",
882
+ "model.layers.75.mlp.gate",
883
+ "model.layers.74.mlp.gate.e_score_correction_bias",
884
+ "model.layers.89.self_attn.v_proj.bias",
885
+ "model.layers.59.self_attn.k_norm",
886
+ "model.layers.76.input_layernorm",
887
+ "model.layers.66.mlp.gate",
888
+ "model.layers.55.post_attention_layernorm",
889
+ "model.layers.24.input_layernorm",
890
+ "model.layers.57.post_attention_layernorm",
891
+ "model.layers.23.input_layernorm",
892
+ "model.layers.67.mlp.gate",
893
+ "model.layers.13.self_attn.k_proj.bias",
894
+ "model.layers.69.self_attn.v_proj.bias",
895
+ "model.layers.85.post_attention_layernorm",
896
+ "model.layers.13.self_attn.q_proj.bias",
897
+ "model.layers.87.self_attn.k_norm",
898
+ "model.layers.89.self_attn.k_norm",
899
+ "model.layers.54.self_attn.k_proj.bias",
900
+ "model.layers.49.input_layernorm",
901
+ "model.layers.78.self_attn.q_proj.bias",
902
+ "model.layers.81.self_attn.q_norm",
903
+ "model.layers.41.input_layernorm",
904
+ "model.layers.90.mlp.gate",
905
+ "model.layers.61.self_attn.k_norm",
906
+ "model.layers.20.input_layernorm"
907
+ ],
908
+ "kv_cache_scheme": null,
909
+ "quant_method": "compressed-tensors",
910
+ "quantization_status": "compressed",
911
+ "sparsity_config": {}
912
+ },
913
+ "rms_norm_eps": 1e-05,
914
+ "rope_scaling": null,
915
+ "rope_theta": 1000000,
916
+ "routed_scaling_factor": 2.5,
917
+ "tie_word_embeddings": false,
918
+ "topk_group": 1,
919
+ "torch_dtype": "bfloat16",
920
+ "transformers_version": "4.55.0",
921
+ "use_cache": true,
922
+ "use_qk_norm": true,
923
+ "vocab_size": 151552
924
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "pad_token_id": 151329,
9
+ "transformers_version": "4.55.0"
10
+ }
model-00001-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9f61c6ba406a10f26e08ceb1367e01483edc05cf383d45ab9732082a5ab7c85
3
+ size 4955138040
model-00002-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82ef98aade0c09877d5b0be093c3df6b005cb6ab8f05a06485b73f4380446018
3
+ size 4999339816
model-00003-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8778cf2d1949531b671f6861e420a8c672d39bb1b96f5f9886deb920dbf5b242
3
+ size 4996794424
model-00004-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3fab413209fcc0dabad677c98618d8ce76292eb494843aafa501a6680874a5
3
+ size 4996794552
model-00005-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cee9b1378a9e16e9eb06b03fcd50e9ce9a57e9784c051f6c766847d61f74b6
3
+ size 4996795696
model-00006-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cda5a02e6220460b361f1b7486c80381ffa88a1e29b4a03281e4a611ba0b8c0
3
+ size 4996795696
model-00007-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b4779cc3819fc4589e13b954d1492faebc0b976668ae6e1b972c7ffcd36bb39
3
+ size 4996795696
model-00008-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc37bb4e2d662e124cc60945379b2065260614ba2b0a35872a80277fe299abdf
3
+ size 4996795696
model-00009-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cd4dd4b694660f064418b9e46165ad57da18c129a02d2eaeca3d6a978bbff52
3
+ size 4996795696
model-00010-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7139a40dca4ed235683b97ae47be8b2fb147e9b8d9ddad06262aa9014fcad9ee
3
+ size 4996795728
model-00011-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7726392e21598cf86fbd2c9460ed20474c2f447c17099d334be5350919654246
3
+ size 4996795768
model-00012-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16716c8dccd070ab0336dc440cf821dac49a721ba52138f89e4e1debd63ef76b
3
+ size 4996795800
model-00013-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52bd7cd342e0755d428ee2f8b74da4b06104db15fa1f2c9d5f756137982fe0b3
3
+ size 4996795840
model-00014-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:709c159dbd34ab6b101534cc6dd7246cd011cb91db7d748b8e50aafa6ea2e0f1
3
+ size 4996795872
model-00015-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc619df0cdecedd28fbe259cfa981c86321ec6f63778623fc49d2b830398856b
3
+ size 4996795912
model-00016-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfc9efdf9926a1b2d479a75ca0f2529ca600018851ae6960f1c8274a665d9e8b
3
+ size 4996795944
model-00017-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11863df31fedb4abe13320a8dc193158e4bfb73e36a8bd7b9b5784ba6ae1654d
3
+ size 4996795984
model-00018-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9919c4e169cd9bc1432592dbd52a3d98525f4cb9618e3564bc4874898c8d5b91
3
+ size 4997779480
model-00019-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54bb330a2acb65b8b650457a343042525a08284cc5f8974bbf555ce53faac7c1
3
+ size 4944364144
model-00020-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b98ef021d2b38994acfbd1112a64297979b5763e4db2c37bebc385d84d63a7a0
3
+ size 4996751624
model-00021-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:449fb921563c5b41ff6668dcc14871632d965c8c6f37d1f9e5ef85750cf13fa1
3
+ size 4996795656
model-00022-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69442c04fbc371b5e46c4a315a7e782094df20afd6a536c43f27dcbf1a5b5258
3
+ size 4996795688
model-00023-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5129a39864de6e747e78d593c4b55f38ee9ba0ac36cefcfb1d4a5d1f8b03cb0d
3
+ size 4996795696
model-00024-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:920a64f25413e09b793f87136cf61130256920d568299a078d49297544374a71
3
+ size 4996795696
model-00025-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed6f411d2b011ee87e4a4ab634c38d5b722506878b56ced8aa581d50308317df
3
+ size 4996795696
model-00026-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d817fcdafba3c970716f8b840c8350e8b0cd46862b88fd92c9905639c02c21b
3
+ size 4996795696
model-00027-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c14ae69641c43e2ff453fe92b1fa05845ca184f202db7d433a739c39c7746b1d
3
+ size 4996795712
model-00028-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:038ca9b81713414cac01b2c0fdd96d2961ce26e66c894985622604d98aec582a
3
+ size 4996795752
model-00029-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caf222e77a4fe366ff1d2ec04eed3cdb5f3dc6267ff69e78353826f7f12f1ac0
3
+ size 4996795784
model-00030-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59a3c7d15225a9fc4d96470b4df46178fa05bf816a6c7b54eead5df74eb985f9
3
+ size 4996795824
model-00031-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab39cd3642d01c2eda14bbb8a9297db0a252c87efab79ef76ce94374dd6ec9a4
3
+ size 4996795856
model-00032-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e11cfeb6167af095af33b2c138c189d8db69794357b23bdb33a637fecc33731
3
+ size 4996795896
model-00033-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb62d772fb71cd7bf73727c768eedf12eada2bdff2746fbb07062896da1dd5c8
3
+ size 4996795928
model-00034-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:024baab11e89f2333e004cd9202875c31f3ac7307199c1199f0907b640cb9354
3
+ size 4996795968
model-00035-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e557025c6fb11304b3087968df224b4df8f98d275a420252313b2213907983b1
3
+ size 4996796000
model-00036-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb2dcb337af37c4987955ea02ecd8690c64d25638f2cdea54e4c999ca286e8d
3
+ size 4942758568
model-00037-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1ee9454a72367952abc43fc8500807b2363a60e707fde139d5a94a3a5db84a7
3
+ size 4999341024
model-00038-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aad4f5e0febdfd59e8b3fc6e3a8f27c9ef040bf5b523ae165c434535ab3ebb8c
3
+ size 4996795656
model-00039-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:852d4bcc39597a97b089b1acae0563f307350e1a02d6be69f8c200ea75aff2f9
3
+ size 4996795672
model-00040-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cfe008daa0a9751345d5eb1706a5ea4077be44f899000bdaad17988f8d1ccde
3
+ size 4996795696
model-00041-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:720015ff58bcae4aff784b07941db6bb36cbaf6398911d09c33d9f174f2c09a9
3
+ size 4996795696
model-00042-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469f35d4bc351506a8be9434758b1d7f31451127070c31fa06a51b0210ff17d1
3
+ size 4996795696
model-00043-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dd87134ecd20b616dc38ba3d059b9b7b0e0f6f0b3430552899c9ad6aaed9c39
3
+ size 4996795696
model-00044-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db711e46999567ae41f127115d101f56cc2639c83c55db812c63db37823833ab
3
+ size 3860926760
model-00045-of-00045.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7ed732a1f52d39814adc6a0b127bad1c816b89d7055fa07b029cba98deba7bf
3
+ size 1551892608
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff