cranky-coder08's picture
Add files using upload-large-folder tool
f911107 verified
raw
history blame
34.2 kB
from itertools import chain, islice, tee
from math import inf
from random import shuffle
import pytest
import networkx as nx
from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE
def check_independent(basis):
if len(basis) == 0:
return
try:
import numpy as np
except ImportError:
return
H = nx.Graph()
for b in basis:
nx.add_cycle(H, b)
inc = nx.incidence_matrix(H, oriented=True)
rank = np.linalg.matrix_rank(inc.toarray(), tol=None, hermitian=False)
assert inc.shape[1] - rank == len(basis)
class TestCycles:
@classmethod
def setup_class(cls):
G = nx.Graph()
nx.add_cycle(G, [0, 1, 2, 3])
nx.add_cycle(G, [0, 3, 4, 5])
nx.add_cycle(G, [0, 1, 6, 7, 8])
G.add_edge(8, 9)
cls.G = G
def is_cyclic_permutation(self, a, b):
n = len(a)
if len(b) != n:
return False
l = a + a
return any(l[i : i + n] == b for i in range(n))
def test_cycle_basis(self):
G = self.G
cy = nx.cycle_basis(G, 0)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
cy = nx.cycle_basis(G, 1)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
cy = nx.cycle_basis(G, 9)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
# test disconnected graphs
nx.add_cycle(G, "ABC")
cy = nx.cycle_basis(G, 9)
sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5], ["A", "B", "C"]]
def test_cycle_basis2(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.DiGraph()
cy = nx.cycle_basis(G, 0)
def test_cycle_basis3(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.MultiGraph()
cy = nx.cycle_basis(G, 0)
def test_cycle_basis_ordered(self):
# see gh-6654 replace sets with (ordered) dicts
G = nx.cycle_graph(5)
G.update(nx.cycle_graph(range(3, 8)))
cbG = nx.cycle_basis(G)
perm = {1: 0, 0: 1} # switch 0 and 1
H = nx.relabel_nodes(G, perm)
cbH = [[perm.get(n, n) for n in cyc] for cyc in nx.cycle_basis(H)]
assert cbG == cbH
def test_cycle_basis_self_loop(self):
"""Tests the function for graphs with self loops"""
G = nx.Graph()
nx.add_cycle(G, [0, 1, 2, 3])
nx.add_cycle(G, [0, 0, 6, 2])
cy = nx.cycle_basis(G)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0], [0, 1, 2], [0, 2, 3], [0, 2, 6]]
def test_simple_cycles(self):
edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
G = nx.DiGraph(edges)
cc = sorted(nx.simple_cycles(G))
ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]]
assert len(cc) == len(ca)
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
def test_unsortable(self):
# this test ensures that graphs whose nodes without an intrinsic
# ordering do not cause issues
G = nx.DiGraph()
nx.add_cycle(G, ["a", 1])
c = list(nx.simple_cycles(G))
assert len(c) == 1
def test_simple_cycles_small(self):
G = nx.DiGraph()
nx.add_cycle(G, [1, 2, 3])
c = sorted(nx.simple_cycles(G))
assert len(c) == 1
assert self.is_cyclic_permutation(c[0], [1, 2, 3])
nx.add_cycle(G, [10, 20, 30])
cc = sorted(nx.simple_cycles(G))
assert len(cc) == 2
ca = [[1, 2, 3], [10, 20, 30]]
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
def test_simple_cycles_empty(self):
G = nx.DiGraph()
assert list(nx.simple_cycles(G)) == []
def worst_case_graph(self, k):
# see figure 1 in Johnson's paper
# this graph has exactly 3k simple cycles
G = nx.DiGraph()
for n in range(2, k + 2):
G.add_edge(1, n)
G.add_edge(n, k + 2)
G.add_edge(2 * k + 1, 1)
for n in range(k + 2, 2 * k + 2):
G.add_edge(n, 2 * k + 2)
G.add_edge(n, n + 1)
G.add_edge(2 * k + 3, k + 2)
for n in range(2 * k + 3, 3 * k + 3):
G.add_edge(2 * k + 2, n)
G.add_edge(n, 3 * k + 3)
G.add_edge(3 * k + 3, 2 * k + 2)
return G
def test_worst_case_graph(self):
# see figure 1 in Johnson's paper
for k in range(3, 10):
G = self.worst_case_graph(k)
l = len(list(nx.simple_cycles(G)))
assert l == 3 * k
def test_recursive_simple_and_not(self):
for k in range(2, 10):
G = self.worst_case_graph(k)
cc = sorted(nx.simple_cycles(G))
rcc = sorted(nx.recursive_simple_cycles(G))
assert len(cc) == len(rcc)
for c in cc:
assert any(self.is_cyclic_permutation(c, r) for r in rcc)
for rc in rcc:
assert any(self.is_cyclic_permutation(rc, c) for c in cc)
def test_simple_graph_with_reported_bug(self):
G = nx.DiGraph()
edges = [
(0, 2),
(0, 3),
(1, 0),
(1, 3),
(2, 1),
(2, 4),
(3, 2),
(3, 4),
(4, 0),
(4, 1),
(4, 5),
(5, 0),
(5, 1),
(5, 2),
(5, 3),
]
G.add_edges_from(edges)
cc = sorted(nx.simple_cycles(G))
assert len(cc) == 26
rcc = sorted(nx.recursive_simple_cycles(G))
assert len(cc) == len(rcc)
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in rcc)
for rc in rcc:
assert any(self.is_cyclic_permutation(rc, c) for c in cc)
def pairwise(iterable):
a, b = tee(iterable)
next(b, None)
return zip(a, b)
def cycle_edges(c):
return pairwise(chain(c, islice(c, 1)))
def directed_cycle_edgeset(c):
return frozenset(cycle_edges(c))
def undirected_cycle_edgeset(c):
if len(c) == 1:
return frozenset(cycle_edges(c))
return frozenset(map(frozenset, cycle_edges(c)))
def multigraph_cycle_edgeset(c):
if len(c) <= 2:
return frozenset(cycle_edges(c))
else:
return frozenset(map(frozenset, cycle_edges(c)))
class TestCycleEnumeration:
@staticmethod
def K(n):
return nx.complete_graph(n)
@staticmethod
def D(n):
return nx.complete_graph(n).to_directed()
@staticmethod
def edgeset_function(g):
if g.is_directed():
return directed_cycle_edgeset
elif g.is_multigraph():
return multigraph_cycle_edgeset
else:
return undirected_cycle_edgeset
def check_cycle(self, g, c, es, cache, source, original_c, length_bound, chordless):
if length_bound is not None and len(c) > length_bound:
raise RuntimeError(
f"computed cycle {original_c} exceeds length bound {length_bound}"
)
if source == "computed":
if es in cache:
raise RuntimeError(
f"computed cycle {original_c} has already been found!"
)
else:
cache[es] = tuple(original_c)
else:
if es in cache:
cache.pop(es)
else:
raise RuntimeError(f"expected cycle {original_c} was not computed")
if not all(g.has_edge(*e) for e in es):
raise RuntimeError(
f"{source} claimed cycle {original_c} is not a cycle of g"
)
if chordless and len(g.subgraph(c).edges) > len(c):
raise RuntimeError(f"{source} cycle {original_c} is not chordless")
def check_cycle_algorithm(
self,
g,
expected_cycles,
length_bound=None,
chordless=False,
algorithm=None,
):
if algorithm is None:
algorithm = nx.chordless_cycles if chordless else nx.simple_cycles
# note: we shuffle the labels of g to rule out accidentally-correct
# behavior which occurred during the development of chordless cycle
# enumeration algorithms
relabel = list(range(len(g)))
shuffle(relabel)
label = dict(zip(g, relabel))
unlabel = dict(zip(relabel, g))
h = nx.relabel_nodes(g, label, copy=True)
edgeset = self.edgeset_function(h)
params = {}
if length_bound is not None:
params["length_bound"] = length_bound
cycle_cache = {}
for c in algorithm(h, **params):
original_c = [unlabel[x] for x in c]
es = edgeset(c)
self.check_cycle(
h, c, es, cycle_cache, "computed", original_c, length_bound, chordless
)
if isinstance(expected_cycles, int):
if len(cycle_cache) != expected_cycles:
raise RuntimeError(
f"expected {expected_cycles} cycles, got {len(cycle_cache)}"
)
return
for original_c in expected_cycles:
c = [label[x] for x in original_c]
es = edgeset(c)
self.check_cycle(
h, c, es, cycle_cache, "expected", original_c, length_bound, chordless
)
if len(cycle_cache):
for c in cycle_cache.values():
raise RuntimeError(
f"computed cycle {c} is valid but not in the expected cycle set!"
)
def check_cycle_enumeration_integer_sequence(
self,
g_family,
cycle_counts,
length_bound=None,
chordless=False,
algorithm=None,
):
for g, num_cycles in zip(g_family, cycle_counts):
self.check_cycle_algorithm(
g,
num_cycles,
length_bound=length_bound,
chordless=chordless,
algorithm=algorithm,
)
def test_directed_chordless_cycle_digons(self):
g = nx.DiGraph()
nx.add_cycle(g, range(5))
nx.add_cycle(g, range(5)[::-1])
g.add_edge(0, 0)
expected_cycles = [(0,), (1, 2), (2, 3), (3, 4)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=2)
expected_cycles = [c for c in expected_cycles if len(c) < 2]
self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=1)
def test_directed_chordless_cycle_undirected(self):
g = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (5, 1), (0, 2)])
expected_cycles = [(0, 2, 3, 4, 5), (1, 2, 3, 4, 5)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
g = nx.DiGraph()
nx.add_cycle(g, range(5))
nx.add_cycle(g, range(4, 9))
g.add_edge(7, 3)
expected_cycles = [(0, 1, 2, 3, 4), (3, 4, 5, 6, 7), (4, 5, 6, 7, 8)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
g.add_edge(3, 7)
expected_cycles = [(0, 1, 2, 3, 4), (3, 7), (4, 5, 6, 7, 8)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
expected_cycles = [(3, 7)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=4)
g.remove_edge(7, 3)
expected_cycles = [(0, 1, 2, 3, 4), (4, 5, 6, 7, 8)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
g = nx.DiGraph((i, j) for i in range(10) for j in range(i))
expected_cycles = []
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
def test_chordless_cycles_directed(self):
G = nx.DiGraph()
nx.add_cycle(G, range(5))
nx.add_cycle(G, range(4, 12))
expected = [[*range(5)], [*range(4, 12)]]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
G.add_edge(7, 3)
expected.append([*range(3, 8)])
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
G.add_edge(3, 7)
expected[-1] = [7, 3]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
expected.pop()
G.remove_edge(7, 3)
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
def test_directed_chordless_cycle_diclique(self):
g_family = [self.D(n) for n in range(10)]
expected_cycles = [(n * n - n) // 2 for n in range(10)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected_cycles, chordless=True
)
expected_cycles = [(n * n - n) // 2 for n in range(10)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected_cycles, length_bound=2
)
def test_directed_chordless_loop_blockade(self):
g = nx.DiGraph((i, i) for i in range(10))
nx.add_cycle(g, range(10))
expected_cycles = [(i,) for i in range(10)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
self.check_cycle_algorithm(g, expected_cycles, length_bound=1)
g = nx.MultiDiGraph(g)
g.add_edges_from((i, i) for i in range(0, 10, 2))
expected_cycles = [(i,) for i in range(1, 10, 2)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
def test_simple_cycles_notable_clique_sequences(self):
# A000292: Number of labeled graphs on n+3 nodes that are triangles.
g_family = [self.K(n) for n in range(2, 12)]
expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=3
)
def triangles(g, **kwargs):
yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 3)
# directed complete graphs have twice as many triangles thanks to reversal
g_family = [self.D(n) for n in range(2, 12)]
expected = [2 * e for e in expected]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=3, algorithm=triangles
)
def four_cycles(g, **kwargs):
yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 4)
# A050534: the number of 4-cycles in the complete graph K_{n+1}
expected = [0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990]
g_family = [self.K(n) for n in range(1, 12)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=4, algorithm=four_cycles
)
# directed complete graphs have twice as many 4-cycles thanks to reversal
expected = [2 * e for e in expected]
g_family = [self.D(n) for n in range(1, 15)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=4, algorithm=four_cycles
)
# A006231: the number of elementary circuits in a complete directed graph with n nodes
expected = [0, 1, 5, 20, 84, 409, 2365]
g_family = [self.D(n) for n in range(1, 8)]
self.check_cycle_enumeration_integer_sequence(g_family, expected)
# A002807: Number of cycles in the complete graph on n nodes K_{n}.
expected = [0, 0, 0, 1, 7, 37, 197, 1172]
g_family = [self.K(n) for n in range(8)]
self.check_cycle_enumeration_integer_sequence(g_family, expected)
def test_directed_chordless_cycle_parallel_multiedges(self):
g = nx.MultiGraph()
nx.add_cycle(g, range(5))
expected = [[*range(5)]]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
expected = [*cycle_edges(range(5))]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
expected = []
self.check_cycle_algorithm(g, expected, chordless=True)
g = nx.MultiDiGraph()
nx.add_cycle(g, range(5))
expected = [[*range(5)]]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
self.check_cycle_algorithm(g, [], chordless=True)
nx.add_cycle(g, range(5))
self.check_cycle_algorithm(g, [], chordless=True)
g = nx.MultiDiGraph()
nx.add_cycle(g, range(5))
nx.add_cycle(g, range(5)[::-1])
expected = [*cycle_edges(range(5))]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
self.check_cycle_algorithm(g, [], chordless=True)
def test_chordless_cycles_graph(self):
G = nx.Graph()
nx.add_cycle(G, range(5))
nx.add_cycle(G, range(4, 12))
expected = [[*range(5)], [*range(4, 12)]]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
G.add_edge(7, 3)
expected.append([*range(3, 8)])
expected.append([4, 3, 7, 8, 9, 10, 11])
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
def test_chordless_cycles_giant_hamiltonian(self):
# ... o - e - o - e - o ... # o = odd, e = even
# ... ---/ \-----/ \--- ... # <-- "long" edges
#
# each long edge belongs to exactly one triangle, and one giant cycle
# of length n/2. The remaining edges each belong to a triangle
n = 1000
assert n % 2 == 0
G = nx.Graph()
for v in range(n):
if not v % 2:
G.add_edge(v, (v + 2) % n)
G.add_edge(v, (v + 1) % n)
expected = [[*range(0, n, 2)]] + [
[x % n for x in range(i, i + 3)] for i in range(0, n, 2)
]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
)
# ... o -> e -> o -> e -> o ... # o = odd, e = even
# ... <---/ \---<---/ \---< ... # <-- "long" edges
#
# this time, we orient the short and long edges in opposition
# the cycle structure of this graph is the same, but we need to reverse
# the long one in our representation. Also, we need to drop the size
# because our partitioning algorithm uses strongly connected components
# instead of separating graphs by their strong articulation points
n = 100
assert n % 2 == 0
G = nx.DiGraph()
for v in range(n):
G.add_edge(v, (v + 1) % n)
if not v % 2:
G.add_edge((v + 2) % n, v)
expected = [[*range(n - 2, -2, -2)]] + [
[x % n for x in range(i, i + 3)] for i in range(0, n, 2)
]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
)
def test_simple_cycles_acyclic_tournament(self):
n = 10
G = nx.DiGraph((x, y) for x in range(n) for y in range(x))
self.check_cycle_algorithm(G, [])
self.check_cycle_algorithm(G, [], chordless=True)
for k in range(n + 1):
self.check_cycle_algorithm(G, [], length_bound=k)
self.check_cycle_algorithm(G, [], length_bound=k, chordless=True)
def test_simple_cycles_graph(self):
testG = nx.cycle_graph(8)
cyc1 = tuple(range(8))
self.check_cycle_algorithm(testG, [cyc1])
testG.add_edge(4, -1)
nx.add_path(testG, [3, -2, -3, -4])
self.check_cycle_algorithm(testG, [cyc1])
testG.update(nx.cycle_graph(range(8, 16)))
cyc2 = tuple(range(8, 16))
self.check_cycle_algorithm(testG, [cyc1, cyc2])
testG.update(nx.cycle_graph(range(4, 12)))
cyc3 = tuple(range(4, 12))
expected = {
(0, 1, 2, 3, 4, 5, 6, 7), # cyc1
(8, 9, 10, 11, 12, 13, 14, 15), # cyc2
(4, 5, 6, 7, 8, 9, 10, 11), # cyc3
(4, 5, 6, 7, 8, 15, 14, 13, 12, 11), # cyc2 + cyc3
(0, 1, 2, 3, 4, 11, 10, 9, 8, 7), # cyc1 + cyc3
(0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 8, 7), # cyc1 + cyc2 + cyc3
}
self.check_cycle_algorithm(testG, expected)
assert len(expected) == (2**3 - 1) - 1 # 1 disjoint comb: cyc1 + cyc2
# Basis size = 5 (2 loops overlapping gives 5 small loops
# E
# / \ Note: A-F = 10-15
# 1-2-3-4-5
# / | | \ cyc1=012DAB -- left
# 0 D F 6 cyc2=234E -- top
# \ | | / cyc3=45678F -- right
# B-A-9-8-7 cyc4=89AC -- bottom
# \ / cyc5=234F89AD -- middle
# C
#
# combinations of 5 basis elements: 2^5 - 1 (one includes no cycles)
#
# disjoint combs: (11 total) not simple cycles
# Any pair not including cyc5 => choose(4, 2) = 6
# Any triple not including cyc5 => choose(4, 3) = 4
# Any quad not including cyc5 => choose(4, 4) = 1
#
# we expect 31 - 11 = 20 simple cycles
#
testG = nx.cycle_graph(12)
testG.update(nx.cycle_graph([12, 10, 13, 2, 14, 4, 15, 8]).edges)
expected = (2**5 - 1) - 11 # 11 disjoint combinations
self.check_cycle_algorithm(testG, expected)
def test_simple_cycles_bounded(self):
# iteratively construct a cluster of nested cycles running in the same direction
# there should be one cycle of every length
d = nx.DiGraph()
expected = []
for n in range(10):
nx.add_cycle(d, range(n))
expected.append(n)
for k, e in enumerate(expected):
self.check_cycle_algorithm(d, e, length_bound=k)
# iteratively construct a path of undirected cycles, connected at articulation
# points. there should be one cycle of every length except 2: no digons
g = nx.Graph()
top = 0
expected = []
for n in range(10):
expected.append(n if n < 2 else n - 1)
if n == 2:
# no digons in undirected graphs
continue
nx.add_cycle(g, range(top, top + n))
top += n
for k, e in enumerate(expected):
self.check_cycle_algorithm(g, e, length_bound=k)
def test_simple_cycles_bound_corner_cases(self):
G = nx.cycle_graph(4)
DG = nx.cycle_graph(4, create_using=nx.DiGraph)
assert list(nx.simple_cycles(G, length_bound=0)) == []
assert list(nx.simple_cycles(DG, length_bound=0)) == []
assert list(nx.chordless_cycles(G, length_bound=0)) == []
assert list(nx.chordless_cycles(DG, length_bound=0)) == []
def test_simple_cycles_bound_error(self):
with pytest.raises(ValueError):
G = nx.DiGraph()
for c in nx.simple_cycles(G, -1):
assert False
with pytest.raises(ValueError):
G = nx.Graph()
for c in nx.simple_cycles(G, -1):
assert False
with pytest.raises(ValueError):
G = nx.Graph()
for c in nx.chordless_cycles(G, -1):
assert False
with pytest.raises(ValueError):
G = nx.DiGraph()
for c in nx.chordless_cycles(G, -1):
assert False
def test_chordless_cycles_clique(self):
g_family = [self.K(n) for n in range(2, 15)]
expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, chordless=True
)
# directed cliques have as many digons as undirected graphs have edges
expected = [(n * n - n) // 2 for n in range(15)]
g_family = [self.D(n) for n in range(15)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, chordless=True
)
# These tests might fail with hash randomization since they depend on
# edge_dfs. For more information, see the comments in:
# networkx/algorithms/traversal/tests/test_edgedfs.py
class TestFindCycle:
@classmethod
def setup_class(cls):
cls.nodes = [0, 1, 2, 3]
cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
def test_graph_nocycle(self):
G = nx.Graph(self.edges)
pytest.raises(nx.exception.NetworkXNoCycle, nx.find_cycle, G, self.nodes)
def test_graph_cycle(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1), (1, 2), (2, 0)]
assert x == x_
def test_graph_orientation_none(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(nx.find_cycle(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 2), (2, 0)]
assert x == x_
def test_graph_orientation_original(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(nx.find_cycle(G, self.nodes, orientation="original"))
x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)]
assert x == x_
def test_digraph(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1), (1, 0)]
assert x == x_
def test_digraph_orientation_none(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 0)]
assert x == x_
def test_digraph_orientation_original(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="original"))
x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
assert x == x_
def test_multigraph(self):
G = nx.MultiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 1)] # or (1, 0, 2)
# Hash randomization...could be any edge.
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
def test_multidigraph(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 0)] # (1, 0, 1)
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
def test_digraph_ignore(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
assert x == x_
def test_digraph_reverse(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="reverse"))
x_ = [(1, 0, REVERSE), (0, 1, REVERSE)]
assert x == x_
def test_multidigraph_ignore(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)] # or (1, 0, 1, 1)
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
assert x[1][3] == x_[1][3]
def test_multidigraph_ignore2(self):
# Loop traversed an edge while ignoring its orientation.
G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)])
x = list(nx.find_cycle(G, [0, 1, 2], orientation="ignore"))
x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)]
assert x == x_
def test_multidigraph_original(self):
# Node 2 doesn't need to be searched again from visited from 4.
# The goal here is to cover the case when 2 to be researched from 4,
# when 4 is visited from the first time (so we must make sure that 4
# is not visited from 2, and hence, we respect the edge orientation).
G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)])
pytest.raises(
nx.exception.NetworkXNoCycle,
nx.find_cycle,
G,
[0, 1, 2, 3, 4],
orientation="original",
)
def test_dag(self):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pytest.raises(
nx.exception.NetworkXNoCycle, nx.find_cycle, G, orientation="original"
)
x = list(nx.find_cycle(G, orientation="ignore"))
assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)]
def test_prev_explored(self):
# https://github.com/networkx/networkx/issues/2323
G = nx.DiGraph()
G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)])
pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
x = list(nx.find_cycle(G, 1))
x_ = [(1, 2), (2, 1)]
assert x == x_
x = list(nx.find_cycle(G, 2))
x_ = [(2, 1), (1, 2)]
assert x == x_
x = list(nx.find_cycle(G))
x_ = [(1, 2), (2, 1)]
assert x == x_
def test_no_cycle(self):
# https://github.com/networkx/networkx/issues/2439
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)])
pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G)
def assert_basis_equal(a, b):
assert sorted(a) == sorted(b)
class TestMinimumCycleBasis:
@classmethod
def setup_class(cls):
T = nx.Graph()
nx.add_cycle(T, [1, 2, 3, 4], weight=1)
T.add_edge(2, 4, weight=5)
cls.diamond_graph = T
def test_unweighted_diamond(self):
mcb = nx.minimum_cycle_basis(self.diamond_graph)
assert_basis_equal(mcb, [[2, 4, 1], [3, 4, 2]])
def test_weighted_diamond(self):
mcb = nx.minimum_cycle_basis(self.diamond_graph, weight="weight")
assert_basis_equal(mcb, [[2, 4, 1], [4, 3, 2, 1]])
def test_dimensionality(self):
# checks |MCB|=|E|-|V|+|NC|
ntrial = 10
for seed in range(1234, 1234 + ntrial):
rg = nx.erdos_renyi_graph(10, 0.3, seed=seed)
nnodes = rg.number_of_nodes()
nedges = rg.number_of_edges()
ncomp = nx.number_connected_components(rg)
mcb = nx.minimum_cycle_basis(rg)
assert len(mcb) == nedges - nnodes + ncomp
check_independent(mcb)
def test_complete_graph(self):
cg = nx.complete_graph(5)
mcb = nx.minimum_cycle_basis(cg)
assert all(len(cycle) == 3 for cycle in mcb)
check_independent(mcb)
def test_tree_graph(self):
tg = nx.balanced_tree(3, 3)
assert not nx.minimum_cycle_basis(tg)
def test_petersen_graph(self):
G = nx.petersen_graph()
mcb = list(nx.minimum_cycle_basis(G))
expected = [
[4, 9, 7, 5, 0],
[1, 2, 3, 4, 0],
[1, 6, 8, 5, 0],
[4, 3, 8, 5, 0],
[1, 6, 9, 4, 0],
[1, 2, 7, 5, 0],
]
assert len(mcb) == len(expected)
assert all(c in expected for c in mcb)
# check that order of the nodes is a path
for c in mcb:
assert all(G.has_edge(u, v) for u, v in nx.utils.pairwise(c, cyclic=True))
# check independence of the basis
check_independent(mcb)
def test_gh6787_variable_weighted_complete_graph(self):
N = 8
cg = nx.complete_graph(N)
cg.add_weighted_edges_from([(u, v, 9) for u, v in cg.edges])
cg.add_weighted_edges_from([(u, v, 1) for u, v in nx.cycle_graph(N).edges])
mcb = nx.minimum_cycle_basis(cg, weight="weight")
check_independent(mcb)
def test_gh6787_and_edge_attribute_names(self):
G = nx.cycle_graph(4)
G.add_weighted_edges_from([(0, 2, 10), (1, 3, 10)], weight="dist")
expected = [[1, 3, 0], [3, 2, 1, 0], [1, 2, 0]]
mcb = list(nx.minimum_cycle_basis(G, weight="dist"))
assert len(mcb) == len(expected)
assert all(c in expected for c in mcb)
# test not using a weight with weight attributes
expected = [[1, 3, 0], [1, 2, 0], [3, 2, 0]]
mcb = list(nx.minimum_cycle_basis(G))
assert len(mcb) == len(expected)
assert all(c in expected for c in mcb)
class TestGirth:
@pytest.mark.parametrize(
("G", "expected"),
(
(nx.chvatal_graph(), 4),
(nx.tutte_graph(), 4),
(nx.petersen_graph(), 5),
(nx.heawood_graph(), 6),
(nx.pappus_graph(), 6),
(nx.random_tree(10, seed=42), inf),
(nx.empty_graph(10), inf),
(nx.Graph(chain(cycle_edges(range(5)), cycle_edges(range(6, 10)))), 4),
(
nx.Graph(
[
(0, 6),
(0, 8),
(0, 9),
(1, 8),
(2, 8),
(2, 9),
(4, 9),
(5, 9),
(6, 8),
(6, 9),
(7, 8),
]
),
3,
),
),
)
def test_girth(self, G, expected):
assert nx.girth(G) == expected