File size: 4,986 Bytes
5fed0fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Research Problems
Real-world systems challenges requiring domain expertise in GPU computing, distributed systems, ML pipelines, databases, and security.
## Basic Usage
```bash
# List all problems
frontier-eval --list
# Evaluate a solution (requires Docker)
frontier-eval flash_attn <your_solution.py>
# Evaluate multiple problems
frontier-eval --problems flash_attn,cross_entropy <your_solution.py>
```
## Cloud Evaluation with SkyPilot
Some problems require GPUs or specific hardware. Use [SkyPilot](https://skypilot.readthedocs.io/) to run evaluations on cloud VMs.
**Setup:**
```bash
sky check
```
See [SkyPilot docs](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html) for cloud credential setup.
**Usage:**
```bash
frontier-eval flash_attn <your_solution.py> --skypilot
```
## Batch Evaluation
For evaluating multiple solutions at once, create a pairs file mapping solutions to problems:
```
# pairs.txt format: solution_path:problem_id
solutions/my_flash_attn_v1.py:flash_attn
solutions/my_flash_attn_v2.py:flash_attn
solutions/my_cross_entropy.py:cross_entropy
```
Then run:
```bash
# Evaluate all pairs
frontier-eval batch --pairs-file pairs.txt
# Resume interrupted evaluation
frontier-eval batch --pairs-file pairs.txt --resume
# Check status
frontier-eval batch --status --results-dir results/batch
```
## Python API
```python
from frontier_cs import FrontierCSEvaluator
evaluator = FrontierCSEvaluator()
# Single problem
result = evaluator.evaluate("research", problem_id="flash_attn", code=my_code)
print(f"Score: {result.score}")
# With SkyPilot
result = evaluator.evaluate("research", problem_id="flash_attn", code=my_code,
backend="skypilot")
# Batch evaluation
results = evaluator.evaluate_batch("research",
problem_ids=["flash_attn", "cross_entropy"],
code=my_code)
```
## Problem Structure
Each problem is in its own directory under `research/problems/`:
```
research/problems/
βββ flash_attn/ # Single problem
β βββ config.yaml
β βββ readme
β βββ evaluator.py
β βββ resources/
βββ gemm_optimization/ # Problem with variants
β βββ squares/
β βββ rectangles/
β βββ ...
βββ ...
```
### File Reference
| File | Purpose |
|------|---------|
| `config.yaml` | Runtime config (Docker image, GPU requirement, timeout) |
| `readme` | Problem description, API spec, scoring formula |
| `set_up_env.sh` | Environment setup (install deps, check CUDA) |
| `download_datasets.sh` | Download datasets (for local pre-download) |
| `evaluate.sh` | Evaluation entry point |
| `run_evaluator.sh` | Invokes `evaluator.py` |
| `evaluator.py` | Core evaluation logic |
| `resources/` | Baseline code, benchmark, test data |
### config.yaml Example
```yaml
dependencies:
uv_project: resources # Optional: uv project in resources/
datasets: [] # Optional: dataset URLs
tag: hpc # Category: os, hpc, ai, db, pl, security
runtime:
docker:
image: andylizf/triton-tlx:tlx-nv-cu122
gpu: true
timeout_seconds: 1800
```
## Evaluation Flow
Inside the Docker container, the execution order is:
```
1. set_up_env.sh β Initialize environment
2. Copy solution.py β /work/execution_env/solution_env/
3. evaluate.sh β Check files, call run_evaluator.sh
4. run_evaluator.sh β python3 evaluator.py
5. evaluator.py β Load Solution.solve(), run benchmark, print score
```
The final score is extracted from the last numeric line of stdout.
## Solution Interface
Submit a `solution.py` implementing the `Solution` class. The interface varies by problem type:
### Triton Kernel Problems (flash_attn, cross_entropy, gemm_optimization...)
```python
class Solution:
def solve(self, spec_path: str = None) -> dict:
"""
Returns either:
- {"code": "python_code_string"}
- {"program_path": "path/to/kernel.py"}
"""
kernel_code = '''
import triton
import triton.language as tl
@triton.jit
def my_kernel(...):
...
def entry_function(...):
...
'''
return {"code": kernel_code}
```
### ML Training Problems (imagenet_pareto...)
```python
class Solution:
def solve(self, train_loader, val_loader, metadata: dict) -> torch.nn.Module:
"""
Train and return a model.
metadata contains: num_classes, input_dim, param_limit,
baseline_accuracy, device, etc.
"""
model = MyModel(...)
# training loop
return model
```
### Other Problems
Check each problem's `readme` for the specific `solve()` signature and return type.
|