Datasets:

License:
File size: 3,450 Bytes
ac33116
35b784c
ac33116
 
cccd770
a734b82
a4e45c4
ac33116
cccd770
ac33116
cccd770
 
a4e45c4
ac33116
 
 
 
 
 
 
 
 
 
70a944b
ac33116
 
 
70a944b
ac33116
 
 
 
 
 
 
 
 
 
 
 
a4e45c4
35b784c
 
 
 
 
 
 
a4e45c4
35b784c
 
 
 
 
 
 
 
 
 
 
 
cccd770
35b784c
 
a4e45c4
35b784c
cccd770
a4e45c4
 
 
 
 
 
 
ac33116
cccd770
a734b82
cccd770
a4e45c4
cccd770
 
 
 
a4e45c4
ac33116
70a944b
 
 
ac33116
 
cccd770
ac33116
cccd770
ac33116
 
 
 
cccd770
ac33116
 
 
70a944b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import time
import random
import datasets
import requests
import subprocess
from datasets import DownloadManager

_URL = "https://res.ai-lab.top/api/acgnailib/models"

_GAMES = {"Genshin": "原神", "StarRail": "星穹铁道"}

_LANGS = {"zh": "中文", "jp": "日语", "en": "英语", "kr": "韩语"}


class hoyoTTS(datasets.GeneratorBasedBuilder):
    def _info(self):
        if self.config.name == "default":
            self.config.name = "黑塔"

        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "audio": datasets.Audio(sampling_rate=44_100),
                    "text": datasets.Value("string"),
                }
            ),
            supervised_keys=("audio", "text"),
            homepage=f"https://www.modelscope.cn/datasets/Genius-Society/{os.path.basename(__file__)[:-3]}",
            license="CC-BY-NC-ND",
            version="0.0.1",
        )

    def _get_txt(self, file_path: str):
        lab_path = file_path.replace(".wav", ".lab")
        with open(lab_path, "r", encoding="utf-8") as file:
            content = file.read()

        return content.strip()

    def _parse_url(self, game: str, lang: str, retry_delay=5):
        try:
            response = requests.post(
                _URL,
                json={
                    "category": _GAMES[game],
                    "repo": f"datasets/aihobbyist/{game}_Dataset",
                    "root_path": "/datasets",
                    "subcategory": _LANGS[lang],
                },
                headers={
                    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/141.0.0.0 Safari/537.36 Edg/141.0.0.0"
                },
            )
            response.raise_for_status()
            data = response.json()
            for item in data:
                if item["dataname"] == self.config.name:
                    return item["dl_link"]

            return None

        except Exception as e:
            print(f"{e}, retrying...")
            time.sleep(retry_delay)
            return self._parse_url(game, lang)

    def _download_and_extract(self, dl_manager: DownloadManager, url: str):
        try:
            return dl_manager.download_and_extract(url)
        except Exception as e:
            print(f"{e}, retrying...")
            return self._download_and_extract(dl_manager, url)

    def _split_generators(self, dl_manager):
        data_splits = []
        subprocess.run(["pip", "install", "py7zr", "librosa"])
        for game in _GAMES:
            for lang in _LANGS:
                url = self._parse_url(game, lang)
                if not url:
                    continue

                data_files = self._download_and_extract(dl_manager, url)
                files = []
                for fpath in dl_manager.iter_files([data_files]):
                    if os.path.basename(fpath).endswith(".wav"):
                        files.append({"audio": fpath, "text": self._get_txt(fpath)})

                random.shuffle(files)
                data_splits.append(
                    datasets.SplitGenerator(
                        name=f"{game}_{lang}",
                        gen_kwargs={"files": files},
                    )
                )

        return data_splits

    def _generate_examples(self, files):
        for i, path in enumerate(files):
            yield i, path