File size: 3,654 Bytes
aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 b6d96f2 aab8642 62ec054 aab8642 b6d96f2 aab8642 b6d96f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
license: mit
task_categories:
- visual-question-answering
- text-to-image
language:
- en
tags:
- vision-language
- vqa
- multimodal
- question-answering
size_categories:
- n<1K
---
# SimpleVQA Dataset
SimpleVQA is a simple vision-language question-answering dataset designed for testing and reproducing vision-language model training. It contains 128 samples with images and question-answer pairs in a conversational format.
## Dataset Description
- **Repository**: [JosephFace/simpleVQA](https://huggingface.co/datasets/JosephFace/simpleVQA)
- **Paper**: N/A
- **Point of Contact**: N/A
### Dataset Summary
SimpleVQA is a lightweight dataset containing 128 vision-language question-answering samples. Each sample includes:
- An image (512x512 RGB)
- A conversation with user questions and assistant answers
- Image paths for reference
This dataset is suitable for:
- Testing vision-language model training pipelines
- Reproducing experimental results
- Educational purposes and quick prototyping
### Supported Tasks
- **Visual Question Answering (VQA)**: Answer questions about image content
- **Image Description**: Generate descriptions of image content
- **Multimodal Conversation**: Engage in conversations about images
### Languages
The dataset is primarily in English.
## Dataset Structure
### Data Fields
Each sample contains the following fields:
- **messages**: List of conversation turns
- `role`: "user" or "assistant"
- `content`: Text content of the message
- **image**: PIL Image object (RGB format, 512x512)
- **image_path**: Original image file path
### Data Splits
- **train**: 128 samples
### Example
```python
from datasets import load_dataset
dataset = load_dataset("JosephFace/simpleVQA")
# Access a sample
sample = dataset["train"][0]
print(sample["messages"])
# [
# {"role": "user", "content": "What is shown in this image?"},
# {"role": "assistant", "content": "This is sample image 0 from the SimpleVQA dataset."}
# ]
print(sample["image"]) # PIL Image object
print(sample["image_path"]) # "images/image_00000.jpg"
```
## Usage
### Load from HuggingFace Hub
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("JosephFace/simpleVQA")
# Or load specific split
train_dataset = load_dataset("JosephFace/simpleVQA", split="train")
```
### Load Locally
If you have the dataset files locally:
```python
from datasets import load_from_disk
# Load from Arrow format
dataset = load_from_disk("path/to/hf_dataset")
# Or load from JSONL
from datasets import load_dataset
dataset = load_dataset("json", data_files="simpleVQA_128.jsonl", split="train")
```
### Use with Training Pipeline
```python
from datasets import load_dataset
from veomni.data.dataset import MappingDataset
# Load dataset
hf_dataset = load_dataset("JosephFace/simpleVQA", split="train")
# Use with VeOmni training pipeline
dataset = MappingDataset(data=hf_dataset, transform=your_transform_function)
```
## Dataset Statistics
- **Total samples**: 128
- **Image format**: JPEG, 512x512 RGB
- **Average conversation turns**: 2 (1 user question + 1 assistant answer)
- **Total images**: 128
## Limitations
- Small dataset size (128 samples) - suitable for testing only
- Synthetic/placeholder images - not real-world data
- Limited question diversity
- Primarily English language content
## Citation
```bibtex
@dataset{josephface_simplevqa,
title={SimpleVQA: A Simple Vision-Language Question-Answering Dataset},
author={JosephFace},
year={2025},
url={https://huggingface.co/datasets/JosephFace/simpleVQA}
}
```
## License
This dataset is released under the MIT License.
|