--- license: mit task_categories: - visual-question-answering - text-to-image language: - en tags: - vision-language - vqa - multimodal - question-answering size_categories: - n<1K --- # SimpleVQA Dataset SimpleVQA is a simple vision-language question-answering dataset designed for testing and reproducing vision-language model training. It contains 128 samples with images and question-answer pairs in a conversational format. ## Dataset Description - **Repository**: [JosephFace/simpleVQA](https://huggingface.co/datasets/JosephFace/simpleVQA) - **Paper**: N/A - **Point of Contact**: N/A ### Dataset Summary SimpleVQA is a lightweight dataset containing 128 vision-language question-answering samples. Each sample includes: - An image (512x512 RGB) - A conversation with user questions and assistant answers - Image paths for reference This dataset is suitable for: - Testing vision-language model training pipelines - Reproducing experimental results - Educational purposes and quick prototyping ### Supported Tasks - **Visual Question Answering (VQA)**: Answer questions about image content - **Image Description**: Generate descriptions of image content - **Multimodal Conversation**: Engage in conversations about images ### Languages The dataset is primarily in English. ## Dataset Structure ### Data Fields Each sample contains the following fields: - **messages**: List of conversation turns - `role`: "user" or "assistant" - `content`: Text content of the message - **image**: PIL Image object (RGB format, 512x512) - **image_path**: Original image file path ### Data Splits - **train**: 128 samples ### Example ```python from datasets import load_dataset dataset = load_dataset("JosephFace/simpleVQA") # Access a sample sample = dataset["train"][0] print(sample["messages"]) # [ # {"role": "user", "content": "What is shown in this image?"}, # {"role": "assistant", "content": "This is sample image 0 from the SimpleVQA dataset."} # ] print(sample["image"]) # PIL Image object print(sample["image_path"]) # "images/image_00000.jpg" ``` ## Usage ### Load from HuggingFace Hub ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("JosephFace/simpleVQA") # Or load specific split train_dataset = load_dataset("JosephFace/simpleVQA", split="train") ``` ### Load Locally If you have the dataset files locally: ```python from datasets import load_from_disk # Load from Arrow format dataset = load_from_disk("path/to/hf_dataset") # Or load from JSONL from datasets import load_dataset dataset = load_dataset("json", data_files="simpleVQA_128.jsonl", split="train") ``` ### Use with Training Pipeline ```python from datasets import load_dataset from veomni.data.dataset import MappingDataset # Load dataset hf_dataset = load_dataset("JosephFace/simpleVQA", split="train") # Use with VeOmni training pipeline dataset = MappingDataset(data=hf_dataset, transform=your_transform_function) ``` ## Dataset Statistics - **Total samples**: 128 - **Image format**: JPEG, 512x512 RGB - **Average conversation turns**: 2 (1 user question + 1 assistant answer) - **Total images**: 128 ## Limitations - Small dataset size (128 samples) - suitable for testing only - Synthetic/placeholder images - not real-world data - Limited question diversity - Primarily English language content ## Citation ```bibtex @dataset{josephface_simplevqa, title={SimpleVQA: A Simple Vision-Language Question-Answering Dataset}, author={JosephFace}, year={2025}, url={https://huggingface.co/datasets/JosephFace/simpleVQA} } ``` ## License This dataset is released under the MIT License.