shchuro commited on
Commit
30a3678
·
verified ·
1 Parent(s): 49a7eda

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -32
README.md CHANGED
@@ -5298,9 +5298,11 @@ For more details about the dataset format and usage, check out the [`fev` docume
5298
 
5299
 
5300
  | config | freq | # items | median length | # obs | # dynamic cols | # static cols | source | citation |
5301
- |:---------------------------|:-------|----------:|----------------:|------------:|-----------------:|----------------:|:---------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
5302
  | `ETT_15T` | 15min | 2 | 69,680 | 975,520 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
 
5303
  | `ETT_1H` | h | 2 | 17,420 | 243,880 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
 
5304
  | `LOOP_SEATTLE_1D` | D | 323 | 365 | 117,895 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5305
  | `LOOP_SEATTLE_1H` | h | 323 | 8,760 | 2,829,480 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5306
  | `LOOP_SEATTLE_5T` | 5min | 323 | 105,120 | 33,953,760 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
@@ -5308,22 +5310,27 @@ For more details about the dataset format and usage, check out the [`fev` docume
5308
  | `M_DENSE_1H` | h | 30 | 17,520 | 525,600 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5309
  | `SZ_TAXI_15T` | 15min | 156 | 2,976 | 464,256 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5310
  | `SZ_TAXI_1H` | h | 156 | 744 | 116,064 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5311
- | `boomlet_1062` | 5min | 1 | 16,384 | 344,064 | 21 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5312
- | `boomlet_1209` | 5min | 1 | 16,384 | 868,352 | 53 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5313
- | `boomlet_1225` | min | 1 | 16,384 | 802,816 | 49 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5314
- | `boomlet_1230` | 5min | 1 | 16,384 | 376,832 | 23 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5315
- | `boomlet_1282` | min | 1 | 16,384 | 573,440 | 35 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5316
- | `boomlet_1487` | 5min | 1 | 16,384 | 884,736 | 54 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5317
- | `boomlet_1631` | 30min | 1 | 10,463 | 418,520 | 40 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5318
- | `boomlet_1676` | 30min | 1 | 10,463 | 1,046,300 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5319
- | `boomlet_1855` | h | 1 | 5,231 | 272,012 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5320
- | `boomlet_1975` | h | 1 | 5,231 | 392,325 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5321
- | `boomlet_2187` | h | 1 | 5,231 | 523,100 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5322
- | `boomlet_285` | min | 1 | 16,384 | 1,228,800 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5323
- | `boomlet_619` | min | 1 | 16,384 | 851,968 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5324
- | `boomlet_772` | min | 1 | 16,384 | 1,097,728 | 67 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5325
- | `boomlet_963` | min | 1 | 16,384 | 458,752 | 28 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
 
 
5326
  | `ecdc_ili` | W-SUN | 25 | 201 | 4,797 | 1 | 0 | https://github.com/EU-ECDC/Respiratory_viruses_weekly_data/blob/main/data/snapshots/2025-08-08_ILIARIRates.csv | |
 
 
 
5327
  | `epf_be` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5328
  | `epf_de` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5329
  | `epf_fr` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
@@ -5343,15 +5350,15 @@ For more details about the dataset format and usage, check out the [`fev` docume
5343
  | `fred_qd_2025` | QS-DEC | 1 | 266 | 65,170 | 245 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[9]](https://doi.org/10.20955/wp.2020.005) |
5344
  | `gvar` | QS-OCT | 33 | 178 | 52,866 | 9 | 0 | https://data.mendeley.com/datasets/kfp5fhgkvf/1 | [[10]](https://doi.org/10.17863/CAM.104755) |
5345
  | `hermes` | W-MON | 10,000 | 261 | 5,220,000 | 2 | 2 | https://github.com/etidav/HERMES | [[11]](https://arxiv.org/abs/2202.03224) |
5346
- | `hierarchical_sales_1D` | D | 118 | 1,825 | 215,350 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5347
- | `hierarchical_sales_1W` | W-WED | 118 | 260 | 30,680 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5348
  | `hierarchical_tourism` | QE-DEC | 89 | 36 | 3,204 | 1 | 0 | https://robjhyndman.com/publications/hierarchical-tourism/ | [[12]](https://doi.org/10.1016/j.ijforecast.2008.07.004) |
5349
  | `hospital_admissions_1D` | D | 8 | 1,731 | 13,846 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5350
  | `hospital_admissions_1W` | W-SUN | 8 | 246 | 1,968 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5351
- | `hospital` | ME | 767 | 84 | 64,428 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5352
- | `jena_weather_10T` | 10min | 1 | 52,704 | 1,106,784 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5353
- | `jena_weather_1D` | D | 1 | 366 | 7,686 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5354
- | `jena_weather_1H` | h | 1 | 8,784 | 184,464 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5355
  | `kdd_cup_2022_10T` | 10min | 134 | 35,279 | 47,273,860 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5356
  | `kdd_cup_2022_1D` | D | 134 | 243 | 325,620 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5357
  | `kdd_cup_2022_30T` | 30min | 134 | 11,758 | 15,755,720 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
@@ -5369,23 +5376,29 @@ For more details about the dataset format and usage, check out the [`fev` docume
5369
  | `redset_1H` | h | 138 | 2,160 | 283,070 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
5370
  | `redset_5T` | 5min | 118 | 25,920 | 2,960,408 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
5371
  | `restaurant` | D | 817 | 296 | 294,568 | 1 | 4 | https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting | [[18]](www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting/overview/citation) |
5372
- | `rossmann_1D` | D | 1,115 | 942 | 7,352,310 | 7 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[19]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5373
- | `rossmann_1W` | W-SUN | 1,115 | 133 | 889,770 | 6 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[19]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5374
- | `solar_1D` | D | 137 | 365 | 50,005 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5375
- | `solar_1W` | W-FRI | 137 | 52 | 7,124 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
 
 
 
 
5376
  | `solar_with_weather_15T` | 15min | 1 | 198,600 | 1,986,000 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5377
  | `solar_with_weather_1H` | h | 1 | 49,648 | 496,480 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
 
 
5378
  | `uk_covid_nation_1D` | D | 4 | 729 | 41,216 | 14 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5379
  | `uk_covid_nation_1W` | W-SUN | 4 | 105 | 5,936 | 14 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5380
  | `uk_covid_utla_1D` | D | 214 | 721 | 308,786 | 2 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5381
  | `uk_covid_utla_1W` | W-SUN | 214 | 104 | 44,448 | 2 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5382
- | `us_consumption_1M` | MS | 31 | 792 | 24,552 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[21]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
5383
- | `us_consumption_1Q` | QE-DEC | 31 | 262 | 8,122 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[21]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
5384
- | `us_consumption_1Y` | YE-DEC | 31 | 64 | 1,984 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[21]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
5385
- | `walmart` | W-FRI | 2,936 | 143 | 4,609,143 | 11 | 4 | https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting | [[22]](www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting/overview/citation) |
5386
  | `world_co2_emissions` | YE-DEC | 191 | 60 | 11,460 | 1 | 0 | https://www.kaggle.com/datasets/ulrikthygepedersen/co2-emissions-by-country | |
5387
- | `world_life_expectancy` | YE-DEC | 237 | 74 | 17,538 | 1 | 0 | https://www.kaggle.com/datasets/nafayunnoor/global-life-expectancy-data-1950-2023 | [[23]](https://ourworldindata.org/life-expectancy#article-citation) |
5388
- | `world_tourism` | YE-DEC | 178 | 21 | 3,738 | 1 | 0 | https://www.kaggle.com/datasets/bushraqurban/tourism-and-economic-impact | |
5389
 
5390
  ## Publications using these datasets
5391
 
 
5298
 
5299
 
5300
  | config | freq | # items | median length | # obs | # dynamic cols | # static cols | source | citation |
5301
+ |:---------------------------|:-------|:----------|:----------------|:------------|-----------------:|----------------:|:---------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
5302
  | `ETT_15T` | 15min | 2 | 69,680 | 975,520 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
5303
+ | `ETT_1D` | D | 2 | 724 | 10,136 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
5304
  | `ETT_1H` | h | 2 | 17,420 | 243,880 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
5305
+ | `ETT_1W` | W-SUN | 2 | 103 | 1,442 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
5306
  | `LOOP_SEATTLE_1D` | D | 323 | 365 | 117,895 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5307
  | `LOOP_SEATTLE_1H` | h | 323 | 8,760 | 2,829,480 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5308
  | `LOOP_SEATTLE_5T` | 5min | 323 | 105,120 | 33,953,760 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
 
5310
  | `M_DENSE_1H` | h | 30 | 17,520 | 525,600 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5311
  | `SZ_TAXI_15T` | 15min | 156 | 2,976 | 464,256 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5312
  | `SZ_TAXI_1H` | h | 156 | 744 | 116,064 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5313
+ | `bizitobs_l2c_1H` | h | 1 | 2,664 | 18,648 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5314
+ | `bizitobs_l2c_5T` | 5min | 1 | 31,968 | 223,776 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5315
+ | `boomlet_1062` | 5min | 1 | 16,384 | 344,064 | 21 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5316
+ | `boomlet_1209` | 5min | 1 | 16,384 | 868,352 | 53 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5317
+ | `boomlet_1225` | min | 1 | 16,384 | 802,816 | 49 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5318
+ | `boomlet_1230` | 5min | 1 | 16,384 | 376,832 | 23 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5319
+ | `boomlet_1282` | min | 1 | 16,384 | 573,440 | 35 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5320
+ | `boomlet_1487` | 5min | 1 | 16,384 | 884,736 | 54 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5321
+ | `boomlet_1631` | 30min | 1 | 10,463 | 418,520 | 40 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5322
+ | `boomlet_1676` | 30min | 1 | 10,463 | 1,046,300 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5323
+ | `boomlet_1855` | h | 1 | 5,231 | 272,012 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5324
+ | `boomlet_1975` | h | 1 | 5,231 | 392,325 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5325
+ | `boomlet_2187` | h | 1 | 5,231 | 523,100 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5326
+ | `boomlet_285` | min | 1 | 16,384 | 1,228,800 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5327
+ | `boomlet_619` | min | 1 | 16,384 | 851,968 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5328
+ | `boomlet_772` | min | 1 | 16,384 | 1,097,728 | 67 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5329
+ | `boomlet_963` | min | 1 | 16,384 | 458,752 | 28 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5330
  | `ecdc_ili` | W-SUN | 25 | 201 | 4,797 | 1 | 0 | https://github.com/EU-ECDC/Respiratory_viruses_weekly_data/blob/main/data/snapshots/2025-08-08_ILIARIRates.csv | |
5331
+ | `entsoe_15T` | 15min | 6 | 175,292 | 6,310,512 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[5]](https://doi.org/10.25832/time_series/2020-10-06) |
5332
+ | `entsoe_1H` | h | 6 | 43,822 | 1,577,592 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[5]](https://doi.org/10.25832/time_series/2020-10-06) |
5333
+ | `entsoe_30T` | 30min | 6 | 87,645 | 3,155,220 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[5]](https://doi.org/10.25832/time_series/2020-10-06) |
5334
  | `epf_be` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5335
  | `epf_de` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5336
  | `epf_fr` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
 
5350
  | `fred_qd_2025` | QS-DEC | 1 | 266 | 65,170 | 245 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[9]](https://doi.org/10.20955/wp.2020.005) |
5351
  | `gvar` | QS-OCT | 33 | 178 | 52,866 | 9 | 0 | https://data.mendeley.com/datasets/kfp5fhgkvf/1 | [[10]](https://doi.org/10.17863/CAM.104755) |
5352
  | `hermes` | W-MON | 10,000 | 261 | 5,220,000 | 2 | 2 | https://github.com/etidav/HERMES | [[11]](https://arxiv.org/abs/2202.03224) |
5353
+ | `hierarchical_sales_1D` | D | 118 | 1,825 | 215,350 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5354
+ | `hierarchical_sales_1W` | W-WED | 118 | 260 | 30,680 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5355
  | `hierarchical_tourism` | QE-DEC | 89 | 36 | 3,204 | 1 | 0 | https://robjhyndman.com/publications/hierarchical-tourism/ | [[12]](https://doi.org/10.1016/j.ijforecast.2008.07.004) |
5356
  | `hospital_admissions_1D` | D | 8 | 1,731 | 13,846 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5357
  | `hospital_admissions_1W` | W-SUN | 8 | 246 | 1,968 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5358
+ | `hospital` | ME | 767 | 84 | 64,428 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5359
+ | `jena_weather_10T` | 10min | 1 | 52,704 | 1,106,784 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5360
+ | `jena_weather_1D` | D | 1 | 366 | 7,686 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5361
+ | `jena_weather_1H` | h | 1 | 8,784 | 184,464 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5362
  | `kdd_cup_2022_10T` | 10min | 134 | 35,279 | 47,273,860 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5363
  | `kdd_cup_2022_1D` | D | 134 | 243 | 325,620 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5364
  | `kdd_cup_2022_30T` | 30min | 134 | 11,758 | 15,755,720 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
 
5376
  | `redset_1H` | h | 138 | 2,160 | 283,070 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
5377
  | `redset_5T` | 5min | 118 | 25,920 | 2,960,408 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
5378
  | `restaurant` | D | 817 | 296 | 294,568 | 1 | 4 | https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting | [[18]](www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting/overview/citation) |
5379
+ | `rohlik_orders_1D` | D | 7 | 1,197 | 115,650 | 15 | 0 | https://www.kaggle.com/competitions/rohlik-orders-forecasting-challenge | [[19]](www.kaggle.com/competitions/rohlik-orders-forecasting-challenge/overview/citation) |
5380
+ | `rohlik_orders_1W` | W-SUN | 7 | 170 | 15,316 | 14 | 0 | https://www.kaggle.com/competitions/rohlik-orders-forecasting-challenge | [[19]](www.kaggle.com/competitions/rohlik-orders-forecasting-challenge/overview/citation) |
5381
+ | `rohlik_sales_1D` | D | 5,390 | 1,046 | 74,413,935 | 15 | 7 | https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2 | [[20]](https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2/overview/citation) |
5382
+ | `rohlik_sales_1W` | W-SUN | 5,243 | 150 | 10,516,770 | 15 | 7 | https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2 | [[20]](https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2/overview/citation) |
5383
+ | `rossmann_1D` | D | 1,115 | 942 | 7,352,310 | 7 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[21]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5384
+ | `rossmann_1W` | W-SUN | 1,115 | 133 | 889,770 | 6 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[21]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5385
+ | `solar_1D` | D | 137 | 365 | 50,005 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5386
+ | `solar_1W` | W-FRI | 137 | 52 | 7,124 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5387
  | `solar_with_weather_15T` | 15min | 1 | 198,600 | 1,986,000 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5388
  | `solar_with_weather_1H` | h | 1 | 49,648 | 496,480 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5389
+ | `uci_air_quality_1D` | D | 1 | 389 | 5,057 | 13 | 0 | https://archive.ics.uci.edu/dataset/360/air+quality | [[22]](https://doi.org/10.24432/C59K5F) |
5390
+ | `uci_air_quality_1H` | h | 1 | 9,357 | 121,641 | 13 | 0 | https://archive.ics.uci.edu/dataset/360/air+quality | [[22]](https://doi.org/10.24432/C59K5F) |
5391
  | `uk_covid_nation_1D` | D | 4 | 729 | 41,216 | 14 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5392
  | `uk_covid_nation_1W` | W-SUN | 4 | 105 | 5,936 | 14 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5393
  | `uk_covid_utla_1D` | D | 214 | 721 | 308,786 | 2 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5394
  | `uk_covid_utla_1W` | W-SUN | 214 | 104 | 44,448 | 2 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
5395
+ | `us_consumption_1M` | MS | 31 | 792 | 24,552 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[23]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
5396
+ | `us_consumption_1Q` | QE-DEC | 31 | 262 | 8,122 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[23]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
5397
+ | `us_consumption_1Y` | YE-DEC | 31 | 64 | 1,984 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[23]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
5398
+ | `walmart` | W-FRI | 2,936 | 143 | 4,609,143 | 11 | 4 | https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting | [[24]](www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting/overview/citation) |
5399
  | `world_co2_emissions` | YE-DEC | 191 | 60 | 11,460 | 1 | 0 | https://www.kaggle.com/datasets/ulrikthygepedersen/co2-emissions-by-country | |
5400
+ | `world_life_expectancy` | YE-DEC | 237 | 74 | 17,538 | 1 | 0 | https://www.kaggle.com/datasets/nafayunnoor/global-life-expectancy-data-1950-2023 | [[25]](https://ourworldindata.org/life-expectancy#article-citation) |
5401
+ | `world_tourism` | YE-DEC | 178 | 21 | 3,738 | 1 | 0 | https://www.kaggle.com/datasets/bushraqurban/tourism-and-economic-impact | [[26]](https://www.worldbank.org/en/archive/using-the-archives/terms-of-use-reproduction-and-citation) |
5402
 
5403
  ## Publications using these datasets
5404