Commit
·
0ac4ef8
1
Parent(s):
731e223
updated the script
Browse files- Controlled-Text-Reduction-dataset.py +328 -157
Controlled-Text-Reduction-dataset.py
CHANGED
|
@@ -1,3 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# coding=utf-8
|
| 2 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
#
|
|
@@ -12,131 +251,74 @@
|
|
| 12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
-
"""A Dataset loading script for the
|
| 16 |
|
| 17 |
|
| 18 |
import datasets
|
| 19 |
-
from dataclasses import dataclass
|
| 20 |
from pathlib import Path
|
| 21 |
-
from typing import List
|
| 22 |
import pandas as pd
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
| 34 |
-
# pages={7008--7013},
|
| 35 |
-
# year={2020}
|
| 36 |
-
# }
|
| 37 |
-
# """
|
| 38 |
|
| 39 |
|
| 40 |
_DESCRIPTION = """\
|
| 41 |
-
The dataset contains
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
"""
|
| 45 |
|
| 46 |
-
_HOMEPAGE = "https://github.com/
|
| 47 |
-
|
| 48 |
-
_LICENSE = """MIT License
|
| 49 |
-
Copyright (c) 2022 lovodkin93
|
| 50 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 51 |
-
of this software and associated documentation files (the "Software"), to deal
|
| 52 |
-
in the Software without restriction, including without limitation the rights
|
| 53 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 54 |
-
copies of the Software, and to permit persons to whom the Software is
|
| 55 |
-
furnished to do so, subject to the following conditions:
|
| 56 |
-
The above copyright notice and this permission notice shall be included in all
|
| 57 |
-
copies or substantial portions of the Software.
|
| 58 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 59 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 60 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 61 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 62 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 63 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 64 |
-
SOFTWARE."""
|
| 65 |
|
|
|
|
| 66 |
|
| 67 |
-
# _URLs = {
|
| 68 |
-
# "csv": {
|
| 69 |
-
# "sentences": {
|
| 70 |
-
# "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
|
| 71 |
-
# "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
|
| 72 |
-
# "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
|
| 73 |
-
# "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
|
| 74 |
-
# },
|
| 75 |
-
# "qasrl-annotations": {
|
| 76 |
-
# "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
|
| 77 |
-
# "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
|
| 78 |
-
# "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
|
| 79 |
-
# "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
|
| 80 |
-
# },
|
| 81 |
-
# },
|
| 82 |
-
# "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
|
| 83 |
-
# }
|
| 84 |
|
| 85 |
_URLs = {
|
| 86 |
-
"
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
"
|
| 92 |
-
"train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
|
| 93 |
-
"dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
| 94 |
-
"test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
| 95 |
-
},
|
| 96 |
}
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
""" Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
|
| 102 |
-
data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
|
| 103 |
-
|
| 104 |
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
-
VERSION = datasets.Version("1.0.0")
|
| 112 |
-
|
| 113 |
-
BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
|
| 114 |
|
| 115 |
BUILDER_CONFIGS = [
|
| 116 |
-
|
| 117 |
-
name="
|
| 118 |
-
version=VERSION,
|
| 119 |
-
description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
|
| 120 |
-
data_source="DUC-2001-2002"
|
| 121 |
),
|
| 122 |
-
ControlledTextReductionConfig(
|
| 123 |
-
name="CNN-DM",
|
| 124 |
-
version=VERSION,
|
| 125 |
-
description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
|
| 126 |
-
data_source="CNN-DM"
|
| 127 |
-
)
|
| 128 |
]
|
| 129 |
|
| 130 |
DEFAULT_CONFIG_NAME = (
|
| 131 |
-
"
|
| 132 |
)
|
| 133 |
|
| 134 |
def _info(self):
|
| 135 |
features = datasets.Features(
|
| 136 |
{
|
| 137 |
-
"
|
| 138 |
-
"
|
| 139 |
-
"
|
|
|
|
| 140 |
}
|
| 141 |
)
|
| 142 |
return datasets.DatasetInfo(
|
|
@@ -159,69 +341,58 @@ class ControlledTextReduction(datasets.GeneratorBasedBuilder):
|
|
| 159 |
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
| 160 |
"""Returns SplitGenerators."""
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
datasets.
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
else:
|
| 193 |
-
return [
|
| 194 |
-
datasets.SplitGenerator(
|
| 195 |
-
name=datasets.Split.TRAIN,
|
| 196 |
-
# These kwargs will be passed to _generate_examples
|
| 197 |
-
gen_kwargs={
|
| 198 |
-
"filepath": corpora["train"]
|
| 199 |
-
},
|
| 200 |
-
),
|
| 201 |
-
datasets.SplitGenerator(
|
| 202 |
-
name=datasets.Split.VALIDATION,
|
| 203 |
-
# These kwargs will be passed to _generate_examples
|
| 204 |
-
gen_kwargs={
|
| 205 |
-
"filepath": corpora["dev"]
|
| 206 |
-
},
|
| 207 |
-
),
|
| 208 |
-
datasets.SplitGenerator(
|
| 209 |
-
name=datasets.Split.TEST,
|
| 210 |
-
# These kwargs will be passed to _generate_examples
|
| 211 |
-
gen_kwargs={
|
| 212 |
-
"filepath": corpora["test"]
|
| 213 |
-
},
|
| 214 |
-
),
|
| 215 |
-
]
|
| 216 |
|
| 217 |
-
def _generate_examples(self,
|
| 218 |
|
| 219 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
# merge annotations from sections
|
| 222 |
-
df = pd.read_csv(
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # coding=utf-8
|
| 2 |
+
# # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
# #
|
| 4 |
+
# # Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# # you may not use this file except in compliance with the License.
|
| 6 |
+
# # You may obtain a copy of the License at
|
| 7 |
+
# #
|
| 8 |
+
# # http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
# #
|
| 10 |
+
# # Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# # distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# # See the License for the specific language governing permissions and
|
| 14 |
+
# # limitations under the License.
|
| 15 |
+
# """A Dataset loading script for the Controlled Text Reduction dataset."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# import datasets
|
| 19 |
+
# from dataclasses import dataclass
|
| 20 |
+
# from pathlib import Path
|
| 21 |
+
# from typing import List, Tuple
|
| 22 |
+
# import pandas as pd
|
| 23 |
+
# import json
|
| 24 |
+
# import gzip
|
| 25 |
+
# import itertools
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# _CITATION = """"""
|
| 29 |
+
# # _CITATION = """\
|
| 30 |
+
# # @inproceedings{roit2020controlled,
|
| 31 |
+
# # title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
|
| 32 |
+
# # author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
|
| 33 |
+
# # booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
| 34 |
+
# # pages={7008--7013},
|
| 35 |
+
# # year={2020}
|
| 36 |
+
# # }
|
| 37 |
+
# # """
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# _DESCRIPTION = """\
|
| 41 |
+
# The dataset contains document-summary pairs with document spans (referred to as "highlights"), indicating the "pre-selected" spans that lead to the creation of the summary.
|
| 42 |
+
# The evaluation and test datasets were constructed via controlled crowdsourcing.
|
| 43 |
+
# The train datasets were automatically generated using the summary-source proposition-level alignment model SuperPAL (Ernst et al., 2021).
|
| 44 |
+
# """
|
| 45 |
+
|
| 46 |
+
# _HOMEPAGE = "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main"
|
| 47 |
+
|
| 48 |
+
# _LICENSE = """MIT License
|
| 49 |
+
# Copyright (c) 2022 lovodkin93
|
| 50 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 51 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 52 |
+
# in the Software without restriction, including without limitation the rights
|
| 53 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 54 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 55 |
+
# furnished to do so, subject to the following conditions:
|
| 56 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 57 |
+
# copies or substantial portions of the Software.
|
| 58 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 59 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 60 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 61 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 62 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 63 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 64 |
+
# SOFTWARE."""
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# # _URLs = {
|
| 68 |
+
# # "csv": {
|
| 69 |
+
# # "sentences": {
|
| 70 |
+
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
|
| 71 |
+
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
|
| 72 |
+
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
|
| 73 |
+
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
|
| 74 |
+
# # },
|
| 75 |
+
# # "qasrl-annotations": {
|
| 76 |
+
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
|
| 77 |
+
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
|
| 78 |
+
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
|
| 79 |
+
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
|
| 80 |
+
# # },
|
| 81 |
+
# # },
|
| 82 |
+
# # "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
|
| 83 |
+
# # }
|
| 84 |
+
|
| 85 |
+
# _URLs = {
|
| 86 |
+
# "DUC-2001-2002": {
|
| 87 |
+
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
| 88 |
+
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
| 89 |
+
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_DUC-2001-2002.csv"
|
| 90 |
+
# },
|
| 91 |
+
# "CNN-DM": {
|
| 92 |
+
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
|
| 93 |
+
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
| 94 |
+
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
| 95 |
+
# },
|
| 96 |
+
# }
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# @dataclass
|
| 100 |
+
# class ControlledTextReductionConfig(datasets.BuilderConfig):
|
| 101 |
+
# """ Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
|
| 102 |
+
# data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# class ControlledTextReduction(datasets.GeneratorBasedBuilder):
|
| 107 |
+
# """Controlled Text Reduction: dataset for the Controlled Text Reduction task ().
|
| 108 |
+
# Each data point consists of a document, a summary, and a list of spans of the document that are the pre-selected content whose summary is the summary"""
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# VERSION = datasets.Version("1.0.0")
|
| 112 |
+
|
| 113 |
+
# BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
|
| 114 |
+
|
| 115 |
+
# BUILDER_CONFIGS = [
|
| 116 |
+
# ControlledTextReductionConfig(
|
| 117 |
+
# name="DUC-2001-2002",
|
| 118 |
+
# version=VERSION,
|
| 119 |
+
# description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
|
| 120 |
+
# data_source="DUC-2001-2002"
|
| 121 |
+
# ),
|
| 122 |
+
# ControlledTextReductionConfig(
|
| 123 |
+
# name="CNN-DM",
|
| 124 |
+
# version=VERSION,
|
| 125 |
+
# description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
|
| 126 |
+
# data_source="CNN-DM"
|
| 127 |
+
# )
|
| 128 |
+
# ]
|
| 129 |
+
|
| 130 |
+
# DEFAULT_CONFIG_NAME = (
|
| 131 |
+
# "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
# def _info(self):
|
| 135 |
+
# features = datasets.Features(
|
| 136 |
+
# {
|
| 137 |
+
# "doc_text": datasets.Value("string"),
|
| 138 |
+
# "summary_text": datasets.Value("string"),
|
| 139 |
+
# "highlight_spans": datasets.Value("string")
|
| 140 |
+
# }
|
| 141 |
+
# )
|
| 142 |
+
# return datasets.DatasetInfo(
|
| 143 |
+
# # This is the description that will appear on the datasets page.
|
| 144 |
+
# description=_DESCRIPTION,
|
| 145 |
+
# # This defines the different columns of the dataset and their types
|
| 146 |
+
# features=features, # Here we define them above because they are different between the two configurations
|
| 147 |
+
# # If there's a common (input, target) tuple from the features,
|
| 148 |
+
# # specify them here. They'll be used if as_supervised=True in
|
| 149 |
+
# # builder.as_dataset.
|
| 150 |
+
# supervised_keys=None,
|
| 151 |
+
# # Homepage of the dataset for documentation
|
| 152 |
+
# homepage=_HOMEPAGE,
|
| 153 |
+
# # License for the dataset if available
|
| 154 |
+
# license=_LICENSE,
|
| 155 |
+
# # Citation for the dataset
|
| 156 |
+
# citation=_CITATION,
|
| 157 |
+
# )
|
| 158 |
+
|
| 159 |
+
# def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
| 160 |
+
# """Returns SplitGenerators."""
|
| 161 |
+
|
| 162 |
+
# URLs = _URLs[self.config.data_source]
|
| 163 |
+
# # Download and prepare all files - keep same structure as URLs
|
| 164 |
+
# corpora = {section: Path(dl_manager.download_and_extract(URLs[section]))
|
| 165 |
+
# for section in URLs}
|
| 166 |
+
|
| 167 |
+
# if self.config.data_source=="CNN-DM":
|
| 168 |
+
# return [
|
| 169 |
+
# datasets.SplitGenerator(
|
| 170 |
+
# name=datasets.Split.TRAIN,
|
| 171 |
+
# # These kwargs will be passed to _generate_examples
|
| 172 |
+
# gen_kwargs={
|
| 173 |
+
# "filepath": corpora["train"]
|
| 174 |
+
# },
|
| 175 |
+
# ),
|
| 176 |
+
# datasets.SplitGenerator(
|
| 177 |
+
# name=datasets.Split.VALIDATION,
|
| 178 |
+
# # These kwargs will be passed to _generate_examples
|
| 179 |
+
# gen_kwargs={
|
| 180 |
+
# "filepath": corpora["dev"]
|
| 181 |
+
# },
|
| 182 |
+
# ),
|
| 183 |
+
# datasets.SplitGenerator(
|
| 184 |
+
# name=datasets.Split.TEST,
|
| 185 |
+
# # These kwargs will be passed to _generate_examples
|
| 186 |
+
# gen_kwargs={
|
| 187 |
+
# "filepath": corpora["test"]
|
| 188 |
+
# },
|
| 189 |
+
# ),
|
| 190 |
+
# ]
|
| 191 |
+
|
| 192 |
+
# else:
|
| 193 |
+
# return [
|
| 194 |
+
# datasets.SplitGenerator(
|
| 195 |
+
# name=datasets.Split.TRAIN,
|
| 196 |
+
# # These kwargs will be passed to _generate_examples
|
| 197 |
+
# gen_kwargs={
|
| 198 |
+
# "filepath": corpora["train"]
|
| 199 |
+
# },
|
| 200 |
+
# ),
|
| 201 |
+
# datasets.SplitGenerator(
|
| 202 |
+
# name=datasets.Split.VALIDATION,
|
| 203 |
+
# # These kwargs will be passed to _generate_examples
|
| 204 |
+
# gen_kwargs={
|
| 205 |
+
# "filepath": corpora["dev"]
|
| 206 |
+
# },
|
| 207 |
+
# ),
|
| 208 |
+
# datasets.SplitGenerator(
|
| 209 |
+
# name=datasets.Split.TEST,
|
| 210 |
+
# # These kwargs will be passed to _generate_examples
|
| 211 |
+
# gen_kwargs={
|
| 212 |
+
# "filepath": corpora["test"]
|
| 213 |
+
# },
|
| 214 |
+
# ),
|
| 215 |
+
# ]
|
| 216 |
+
|
| 217 |
+
# def _generate_examples(self, filepath: List[str]):
|
| 218 |
+
|
| 219 |
+
# """ Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
|
| 220 |
+
|
| 221 |
+
# # merge annotations from sections
|
| 222 |
+
# df = pd.read_csv(filepath, index_col=False)
|
| 223 |
+
# for counter, dic in enumerate(df.to_dict('records')):
|
| 224 |
+
# columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
|
| 225 |
+
# for key in columns_to_load_into_object:
|
| 226 |
+
# dic[key] = eval(dic[key])
|
| 227 |
+
# yield counter, dic
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
#################################################################################################################################################
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
# coding=utf-8
|
| 241 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 242 |
#
|
|
|
|
| 251 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 252 |
# See the License for the specific language governing permissions and
|
| 253 |
# limitations under the License.
|
| 254 |
+
"""A Dataset loading script for the QA-Discourse dataset (Pyatkin et. al., ACL 2020)."""
|
| 255 |
|
| 256 |
|
| 257 |
import datasets
|
|
|
|
| 258 |
from pathlib import Path
|
| 259 |
+
from typing import List
|
| 260 |
import pandas as pd
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
_CITATION = """\
|
| 264 |
+
@inproceedings{pyatkin2020qadiscourse,
|
| 265 |
+
title={QADiscourse-Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines},
|
| 266 |
+
author={Pyatkin, Valentina and Klein, Ayal and Tsarfaty, Reut and Dagan, Ido},
|
| 267 |
+
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
| 268 |
+
pages={2804--2819},
|
| 269 |
+
year={2020}
|
| 270 |
+
}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
|
| 273 |
_DESCRIPTION = """\
|
| 274 |
+
The dataset contains question-answer pairs to model discourse relations.
|
| 275 |
+
While answers roughly correspond to spans of the sentence, these spans could have been freely adjusted by annotators to grammaticaly fit the question;
|
| 276 |
+
Therefore, answers are given just as text and not as identified spans of the original sentence.
|
| 277 |
+
See the paper for details: QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines, Pyatkin et. al., 2020
|
| 278 |
"""
|
| 279 |
|
| 280 |
+
_HOMEPAGE = "https://github.com/ValentinaPy/QADiscourse"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
+
_LICENSE = """Resources on this page are licensed CC-BY 4.0, a Creative Commons license requiring Attribution (https://creativecommons.org/licenses/by/4.0/)."""
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
_URLs = {
|
| 286 |
+
"wikinews.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_train.tsv",
|
| 287 |
+
"wikinews.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_dev.tsv",
|
| 288 |
+
"wikinews.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_test.tsv",
|
| 289 |
+
"wikipedia.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_train.tsv",
|
| 290 |
+
"wikipedia.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_dev.tsv",
|
| 291 |
+
"wikipedia.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_test.tsv",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
}
|
| 293 |
|
| 294 |
+
COLUMNS = ['qasrl_id', 'sentence', 'worker_id', 'full_question', 'full_answer',
|
| 295 |
+
'question_start', 'question_aux', 'question_body', 'answer',
|
| 296 |
+
'untokenized sentence', 'target indices for untok sent']
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
|
| 299 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 300 |
+
class QaDiscourse(datasets.GeneratorBasedBuilder):
|
| 301 |
+
"""QA-Discourse: Discourse Relations as Question-Answer Pairs. """
|
| 302 |
|
| 303 |
+
VERSION = datasets.Version("1.0.2")
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
BUILDER_CONFIGS = [
|
| 306 |
+
datasets.BuilderConfig(
|
| 307 |
+
name="plain_text", version=VERSION, description="This provides the QA-Discourse dataset"
|
|
|
|
|
|
|
|
|
|
| 308 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
]
|
| 310 |
|
| 311 |
DEFAULT_CONFIG_NAME = (
|
| 312 |
+
"plain_text" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 313 |
)
|
| 314 |
|
| 315 |
def _info(self):
|
| 316 |
features = datasets.Features(
|
| 317 |
{
|
| 318 |
+
"sentence": datasets.Value("string"),
|
| 319 |
+
"sent_id": datasets.Value("string"),
|
| 320 |
+
"question": datasets.Sequence(datasets.Value("string")),
|
| 321 |
+
"answers": datasets.Sequence(datasets.Value("string")),
|
| 322 |
}
|
| 323 |
)
|
| 324 |
return datasets.DatasetInfo(
|
|
|
|
| 341 |
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
| 342 |
"""Returns SplitGenerators."""
|
| 343 |
|
| 344 |
+
# Download and prepare all files - keep same structure as _URLs
|
| 345 |
+
corpora = {section: Path(dl_manager.download_and_extract(_URLs[section]))
|
| 346 |
+
for section in _URLs}
|
| 347 |
+
|
| 348 |
+
return [
|
| 349 |
+
datasets.SplitGenerator(
|
| 350 |
+
name=datasets.Split.TRAIN,
|
| 351 |
+
# These kwargs will be passed to _generate_examples
|
| 352 |
+
gen_kwargs={
|
| 353 |
+
"filepaths": [corpora["wikinews.train"],
|
| 354 |
+
corpora["wikipedia.train"]],
|
| 355 |
+
},
|
| 356 |
+
),
|
| 357 |
+
datasets.SplitGenerator(
|
| 358 |
+
name=datasets.Split.VALIDATION,
|
| 359 |
+
# These kwargs will be passed to _generate_examples
|
| 360 |
+
gen_kwargs={
|
| 361 |
+
"filepaths": [corpora["wikinews.dev"],
|
| 362 |
+
corpora["wikipedia.dev"]],
|
| 363 |
+
},
|
| 364 |
+
),
|
| 365 |
+
datasets.SplitGenerator(
|
| 366 |
+
name=datasets.Split.TEST,
|
| 367 |
+
# These kwargs will be passed to _generate_examples
|
| 368 |
+
gen_kwargs={
|
| 369 |
+
"filepaths": [corpora["wikinews.test"],
|
| 370 |
+
corpora["wikipedia.test"]],
|
| 371 |
+
},
|
| 372 |
+
),
|
| 373 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
def _generate_examples(self, filepaths: List[str]):
|
| 376 |
|
| 377 |
+
"""
|
| 378 |
+
Yields QA-Discourse examples from a tsv file.
|
| 379 |
+
Sentences with no QAs will yield an ``empty QA'' record, where both 'question' and 'answers' are empty lists.
|
| 380 |
+
"""
|
| 381 |
|
| 382 |
# merge annotations from sections
|
| 383 |
+
df = pd.concat([pd.read_csv(fn, sep='\t', error_bad_lines=False) for fn in filepaths]).reset_index(drop=True)
|
| 384 |
+
df = df.applymap(str) # must turn all values to strings explicitly to avoid type errors
|
| 385 |
+
for counter, row in df.iterrows():
|
| 386 |
+
# Prepare question (3 "slots" and question mark)
|
| 387 |
+
question = [row.question_start, row.question_aux, row.question_body.rstrip('?'), '?']
|
| 388 |
+
answer = [row.answer]
|
| 389 |
+
if row.question_start == "_": # sentence has no QAs
|
| 390 |
+
question = []
|
| 391 |
+
answer = []
|
| 392 |
+
|
| 393 |
+
yield counter, {
|
| 394 |
+
"sentence": row.sentence,
|
| 395 |
+
"sent_id": row.qasrl_id,
|
| 396 |
+
"question": question,
|
| 397 |
+
"answers": answer,
|
| 398 |
+
}
|