Upload folder using huggingface_hub
Browse files- README.md +24 -0
- embeddings.parquet +3 -0
README.md
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Amazon Product Vector Database
|
| 3 |
+
|
| 4 |
+
This dataset contains vector embeddings for Amazon products, including both text and image embeddings.
|
| 5 |
+
|
| 6 |
+
## Contents
|
| 7 |
+
- `embeddings.parquet`: Contains text embeddings, image embeddings, and metadata for all products
|
| 8 |
+
|
| 9 |
+
## Usage
|
| 10 |
+
```python
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from datasets import load_dataset
|
| 13 |
+
|
| 14 |
+
# Load the dataset
|
| 15 |
+
dataset = load_dataset("chen196473/amazon_vector_database")
|
| 16 |
+
|
| 17 |
+
# Read the data
|
| 18 |
+
df = pd.read_parquet("embeddings.parquet")
|
| 19 |
+
|
| 20 |
+
# Extract embeddings
|
| 21 |
+
text_embeddings = df[[col for col in df.columns if col.startswith('text_embedding_')]].values
|
| 22 |
+
image_embeddings = df[[col for col in df.columns if col.startswith('image_embedding_')]].values
|
| 23 |
+
```
|
| 24 |
+
|
embeddings.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf91608cdd865b3da40f8a0d7a887a0d1c656a6a8ed438acaed3068d927063c0
|
| 3 |
+
size 65902681
|