Datasets:
Convert dataset to Parquet (#2)
Browse files- Convert dataset to Parquet (c650355549d47a8a8f51b3ccea68bc002c75ad68)
- Delete loading script (4e8b5f69675fbc1e615e3541cf60932dcb11495f)
- Delete data file (9a333eb1b7625b3337fa2ecb9ed1e8e11e57f2e3)
- Delete data file (1032864a38c150b92458d43a300bd6805b00c202)
- MyoQuant-SDH-Data.py +0 -130
- README.md +35 -25
- SDH_16k/metadata.jsonl +0 -0
- SDH_16k/{SDH_16k.zip → test-00000-of-00001.parquet} +2 -2
- SDH_16k/train-00000-of-00003.parquet +3 -0
- SDH_16k/train-00001-of-00003.parquet +3 -0
- SDH_16k/train-00002-of-00003.parquet +3 -0
- SDH_16k/validation-00000-of-00001.parquet +3 -0
MyoQuant-SDH-Data.py
DELETED
|
@@ -1,130 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""MyoQuant-SDH-Data: The MyoQuant SDH Model Data."""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import csv
|
| 18 |
-
import json
|
| 19 |
-
import os
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
_CITATION = """\
|
| 25 |
-
@InProceedings{Meyer,
|
| 26 |
-
title = {MyoQuant SDH Data},
|
| 27 |
-
author={Corentin Meyer},
|
| 28 |
-
year={2022}
|
| 29 |
-
}
|
| 30 |
-
"""
|
| 31 |
-
_NAMES = ["control", "sick"]
|
| 32 |
-
|
| 33 |
-
_DESCRIPTION = """\
|
| 34 |
-
This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders.
|
| 35 |
-
"""
|
| 36 |
-
|
| 37 |
-
_HOMEPAGE = "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data"
|
| 38 |
-
|
| 39 |
-
_LICENSE = "agpl-3.0"
|
| 40 |
-
|
| 41 |
-
_URLS = {
|
| 42 |
-
"SDH_16k": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/SDH_16k.zip"
|
| 43 |
-
}
|
| 44 |
-
_METADATA_URL = {
|
| 45 |
-
"SDH_16k_metadata": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/metadata.jsonl"
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
class SDH_16k(datasets.GeneratorBasedBuilder):
|
| 50 |
-
"""This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders."""
|
| 51 |
-
|
| 52 |
-
VERSION = datasets.Version("1.0.0")
|
| 53 |
-
|
| 54 |
-
# This is an example of a dataset with multiple configurations.
|
| 55 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 56 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 57 |
-
|
| 58 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 59 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 60 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 61 |
-
|
| 62 |
-
# You will be able to load one or the other configurations in the following list with
|
| 63 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 64 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 65 |
-
|
| 66 |
-
DEFAULT_CONFIG_NAME = "SDH_16k" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 67 |
-
|
| 68 |
-
def _info(self):
|
| 69 |
-
return datasets.DatasetInfo(
|
| 70 |
-
description=_DESCRIPTION,
|
| 71 |
-
features=datasets.Features(
|
| 72 |
-
{
|
| 73 |
-
"image": datasets.Image(),
|
| 74 |
-
"label": datasets.ClassLabel(num_classes=2, names=_NAMES),
|
| 75 |
-
}
|
| 76 |
-
),
|
| 77 |
-
supervised_keys=("image", "label"),
|
| 78 |
-
homepage=_HOMEPAGE,
|
| 79 |
-
citation=_CITATION,
|
| 80 |
-
license=_LICENSE,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
def _split_generators(self, dl_manager):
|
| 84 |
-
archive_path = dl_manager.download(_URLS)
|
| 85 |
-
split_metadata_path = dl_manager.download(_METADATA_URL)
|
| 86 |
-
files_metadata = {}
|
| 87 |
-
with open(split_metadata_path["SDH_16k_metadata"], encoding="utf-8") as f:
|
| 88 |
-
for lines in f.read().splitlines():
|
| 89 |
-
file_json_metdata = json.loads(lines)
|
| 90 |
-
files_metadata.setdefault(file_json_metdata["split"], []).append(
|
| 91 |
-
file_json_metdata
|
| 92 |
-
)
|
| 93 |
-
downloaded_files = dl_manager.download_and_extract(archive_path)
|
| 94 |
-
return [
|
| 95 |
-
datasets.SplitGenerator(
|
| 96 |
-
name=datasets.Split.TRAIN,
|
| 97 |
-
gen_kwargs={
|
| 98 |
-
"download_path": downloaded_files["SDH_16k"],
|
| 99 |
-
"metadata": files_metadata["train"],
|
| 100 |
-
},
|
| 101 |
-
),
|
| 102 |
-
datasets.SplitGenerator(
|
| 103 |
-
name=datasets.Split.VALIDATION,
|
| 104 |
-
gen_kwargs={
|
| 105 |
-
"download_path": downloaded_files["SDH_16k"],
|
| 106 |
-
"metadata": files_metadata["validation"],
|
| 107 |
-
},
|
| 108 |
-
),
|
| 109 |
-
datasets.SplitGenerator(
|
| 110 |
-
name=datasets.Split.TEST,
|
| 111 |
-
gen_kwargs={
|
| 112 |
-
"download_path": downloaded_files["SDH_16k"],
|
| 113 |
-
"metadata": files_metadata["test"],
|
| 114 |
-
},
|
| 115 |
-
),
|
| 116 |
-
]
|
| 117 |
-
|
| 118 |
-
def _generate_examples(self, download_path, metadata):
|
| 119 |
-
"""Generate images and labels for splits."""
|
| 120 |
-
for i, single_metdata in enumerate(metadata):
|
| 121 |
-
img_path = os.path.join(
|
| 122 |
-
download_path,
|
| 123 |
-
single_metdata["split"],
|
| 124 |
-
single_metdata["label"],
|
| 125 |
-
single_metdata["file_name"],
|
| 126 |
-
)
|
| 127 |
-
yield i, {
|
| 128 |
-
"image": img_path,
|
| 129 |
-
"label": single_metdata["label"],
|
| 130 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
---
|
| 2 |
dataset_info:
|
|
|
|
| 3 |
features:
|
| 4 |
- name: image
|
| 5 |
dtype: image
|
|
@@ -7,46 +8,55 @@ dataset_info:
|
|
| 7 |
dtype:
|
| 8 |
class_label:
|
| 9 |
names:
|
| 10 |
-
0: control
|
| 11 |
-
1: sick
|
| 12 |
-
config_name: SDH_16k
|
| 13 |
splits:
|
| 14 |
-
- name: test
|
| 15 |
-
num_bytes: 683067
|
| 16 |
-
num_examples: 3358
|
| 17 |
- name: train
|
| 18 |
-
num_bytes:
|
| 19 |
num_examples: 12085
|
| 20 |
- name: validation
|
| 21 |
-
num_bytes:
|
| 22 |
num_examples: 1344
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
annotations_creators:
|
| 26 |
-
|
| 27 |
language: []
|
| 28 |
language_creators:
|
| 29 |
-
|
| 30 |
license:
|
| 31 |
-
|
| 32 |
multilinguality: []
|
| 33 |
pretty_name: SDH staining muscle fiber histology images used to train MyoQuant model.
|
| 34 |
size_categories:
|
| 35 |
-
|
| 36 |
source_datasets:
|
| 37 |
-
|
| 38 |
tags:
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
task_categories:
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
---
|
| 51 |
|
| 52 |
# Dataset Card for MyoQuant SDH Data
|
|
|
|
| 1 |
---
|
| 2 |
dataset_info:
|
| 3 |
+
config_name: SDH_16k
|
| 4 |
features:
|
| 5 |
- name: image
|
| 6 |
dtype: image
|
|
|
|
| 8 |
dtype:
|
| 9 |
class_label:
|
| 10 |
names:
|
| 11 |
+
'0': control
|
| 12 |
+
'1': sick
|
|
|
|
| 13 |
splits:
|
|
|
|
|
|
|
|
|
|
| 14 |
- name: train
|
| 15 |
+
num_bytes: 1400462101.57
|
| 16 |
num_examples: 12085
|
| 17 |
- name: validation
|
| 18 |
+
num_bytes: 161799668.032
|
| 19 |
num_examples: 1344
|
| 20 |
+
- name: test
|
| 21 |
+
num_bytes: 411212294.084
|
| 22 |
+
num_examples: 3358
|
| 23 |
+
download_size: 1411281481
|
| 24 |
+
dataset_size: 1973474063.6859999
|
| 25 |
annotations_creators:
|
| 26 |
+
- expert-generated
|
| 27 |
language: []
|
| 28 |
language_creators:
|
| 29 |
+
- expert-generated
|
| 30 |
license:
|
| 31 |
+
- agpl-3.0
|
| 32 |
multilinguality: []
|
| 33 |
pretty_name: SDH staining muscle fiber histology images used to train MyoQuant model.
|
| 34 |
size_categories:
|
| 35 |
+
- 10K<n<100K
|
| 36 |
source_datasets:
|
| 37 |
+
- original
|
| 38 |
tags:
|
| 39 |
+
- myology
|
| 40 |
+
- biology
|
| 41 |
+
- histology
|
| 42 |
+
- muscle
|
| 43 |
+
- cells
|
| 44 |
+
- fibers
|
| 45 |
+
- myopathy
|
| 46 |
+
- SDH
|
| 47 |
+
- myoquant
|
| 48 |
task_categories:
|
| 49 |
+
- image-classification
|
| 50 |
+
configs:
|
| 51 |
+
- config_name: SDH_16k
|
| 52 |
+
data_files:
|
| 53 |
+
- split: train
|
| 54 |
+
path: SDH_16k/train-*
|
| 55 |
+
- split: validation
|
| 56 |
+
path: SDH_16k/validation-*
|
| 57 |
+
- split: test
|
| 58 |
+
path: SDH_16k/test-*
|
| 59 |
+
default: true
|
| 60 |
---
|
| 61 |
|
| 62 |
# Dataset Card for MyoQuant SDH Data
|
SDH_16k/metadata.jsonl
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
SDH_16k/{SDH_16k.zip → test-00000-of-00001.parquet}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d87c02a0b62d71682605870bc4feb337c639f901f1eb2d4c75e80fe3d42c26ed
|
| 3 |
+
size 281330348
|
SDH_16k/train-00000-of-00003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e5690ada20952202da39381d690965c2006e7167f83813065f7e1005883c324
|
| 3 |
+
size 336464906
|
SDH_16k/train-00001-of-00003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfd4745ed4c677c60ccbb7ebc116b5bc786ee2681fbd38e3fbf24691952fc3dd
|
| 3 |
+
size 340970471
|
SDH_16k/train-00002-of-00003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a38fd18c2e749c5d5eb8c1d9d0854536bc5a9c6e4b1f9e1ad5fa8a5bd10bc58d
|
| 3 |
+
size 339377396
|
SDH_16k/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:55e9f37c91aca86463308252d4f1cb037f585ba9844ef437c8d7344946ea0f0a
|
| 3 |
+
size 113138360
|