Dataset Viewer
Auto-converted to Parquet Duplicate
category
stringclasses
1 value
label
stringclasses
0 values
type
stringclasses
2 values
image
imagewidth (px)
806
806
t2
null
test
t2
null
train
YAML Metadata Warning: The task_categories "classification" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Bkdckedsvfukv

Dataset Description

Dataset for classification tasks

Dataset Statistics

  • Total Images: 2
  • Total Categories: 1
  • Total Labels: 0
  • Dataset Size: 1 MB
  • Train Images: 1 (50.0%)
  • Test Images: 1 (50.0%)

Usage Examples

Loading the Dataset

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("karthiyayani/bkdckedsvfukv")

# Access the training split
train_data = dataset['train']

# Iterate through examples
for example in train_data:
    category = example['category']  # e.g., "bottle", "cable"
    label = example['label']        # Class name or None for anomaly detection
    split_type = example['type']    # "train" or "test"
    image = example['image']        # PIL Image
    metadata = example['metadata']  # JSON string with additional info
    # Process your data here

Dataset Structure

Data Fields

  • category: Category name (string) - e.g., 'bottle', 'cable'
  • label: Class name (string, nullable) - class label or None for anomaly detection
  • type: Split type (string) - 'train' or 'test'
  • image: PIL Image object
  • file_path: Original file path (string)
  • checksum: MD5 checksum (string)
  • metadata: Additional metadata as JSON (string)

Data Splits

Split Count
test 1
train 1

Category Split Breakdown

Category Train Test
t2 1 1

Dataset Creation

  • Created by: system
  • Created at: 2025-11-05T11:56:29.624610
  • Source: SFTP ingestion
  • Task Type: classification
  • Domain: manufacturing

Citation

If you use this dataset in your research, please cite:

BibTeX

@dataset{bkdckedsvfukv_2025,
  title = {Bkdckedsvfukv},
  author = {system},
  year = {2025},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/datasets/karthiyayani/bkdckedsvfukv}}
}

APA

system. (2025). Bkdckedsvfukv [Dataset]. HuggingFace. https://huggingface.co/datasets/karthiyayani/bkdckedsvfukv

License

This dataset is released under the CC BY 4.0 license.

View License

Summary: You are free to share and adapt the dataset, with attribution.

Contact & Support

For questions, issues, or contributions, please contact:

Downloads last month
22