category
stringclasses 1
value | label
stringclasses 0
values | type
stringclasses 2
values | image
imagewidth (px) 806
806
|
|---|---|---|---|
t2
| null |
test
| |
t2
| null |
train
|
YAML Metadata
Warning:
The task_categories "classification" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
Bkdckedsvfukv
Dataset Description
Dataset for classification tasks
Dataset Statistics
- Total Images: 2
- Total Categories: 1
- Total Labels: 0
- Dataset Size: 1 MB
- Train Images: 1 (50.0%)
- Test Images: 1 (50.0%)
Usage Examples
Loading the Dataset
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("karthiyayani/bkdckedsvfukv")
# Access the training split
train_data = dataset['train']
# Iterate through examples
for example in train_data:
category = example['category'] # e.g., "bottle", "cable"
label = example['label'] # Class name or None for anomaly detection
split_type = example['type'] # "train" or "test"
image = example['image'] # PIL Image
metadata = example['metadata'] # JSON string with additional info
# Process your data here
Dataset Structure
Data Fields
category: Category name (string) - e.g., 'bottle', 'cable'label: Class name (string, nullable) - class label or None for anomaly detectiontype: Split type (string) - 'train' or 'test'image: PIL Image objectfile_path: Original file path (string)checksum: MD5 checksum (string)metadata: Additional metadata as JSON (string)
Data Splits
| Split | Count |
|---|---|
| test | 1 |
| train | 1 |
Category Split Breakdown
| Category | Train | Test |
|---|---|---|
| t2 | 1 | 1 |
Dataset Creation
- Created by: system
- Created at: 2025-11-05T11:56:29.624610
- Source: SFTP ingestion
- Task Type: classification
- Domain: manufacturing
Citation
If you use this dataset in your research, please cite:
BibTeX
@dataset{bkdckedsvfukv_2025,
title = {Bkdckedsvfukv},
author = {system},
year = {2025},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/datasets/karthiyayani/bkdckedsvfukv}}
}
APA
system. (2025). Bkdckedsvfukv [Dataset]. HuggingFace. https://huggingface.co/datasets/karthiyayani/bkdckedsvfukv
License
This dataset is released under the CC BY 4.0 license.
Summary: You are free to share and adapt the dataset, with attribution.
Contact & Support
For questions, issues, or contributions, please contact:
- Email: data-team@company.com
- Issues: Report an issue
- Downloads last month
- 22