Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
code
Size:
100M - 1B
License:
| import gzip | |
| import multiprocessing | |
| import os | |
| import shutil | |
| import time | |
| from argparse import Namespace | |
| from collections import Counter | |
| import numpy as np | |
| from datasets import load_dataset, utils | |
| import re | |
| from huggingface_hub import Repository | |
| from multiprocessing import Pool | |
| from tqdm import tqdm | |
| # Settings | |
| config = { | |
| "dataset_name": "./data/github", | |
| "num_workers": 96, | |
| "line_max": 1000, | |
| "out_path": "./data/github-code", | |
| "repo_name": "github-code", | |
| "org": "lvwerra", | |
| "shard_size": 1000 << 20} | |
| args = Namespace(**config) | |
| PATTERN = re.compile(r'\s+') | |
| def hash_func(text): | |
| return hashlib.md5(re.sub(PATTERN, '', text).encode("utf-8")).hexdigest() | |
| def get_hash(example): | |
| """Get hash of content field.""" | |
| return {"hash": hash_func(example["content"])} | |
| def line_stats(example): | |
| """Calculates mean and max line length of file.""" | |
| line_lengths = [len(line) for line in example["content"].splitlines()] | |
| return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)} | |
| def alpha_stats(example): | |
| """Calculates mean and max line length of file.""" | |
| alpha_frac = np.mean([c.isalnum() for c in example["content"]]) | |
| return {"alpha_frac": alpha_frac} | |
| def check_uniques(example, uniques): | |
| """Check if current hash is still in set of unique hashes and remove if true.""" | |
| if example["hash"] in uniques: | |
| uniques.remove(example["hash"]) | |
| return True | |
| else: | |
| return False | |
| def is_autogenerated(example, scan_width=5): | |
| """Check if file is autogenerated by looking for keywords in the first few lines of the file.""" | |
| keywords = ["auto-generated", "autogenerated", "automatically generated"] | |
| lines = example["content"].splitlines() | |
| for _, line in zip(range(scan_width), lines): | |
| for keyword in keywords: | |
| if keyword in line.lower(): | |
| return {"autogenerated": True} | |
| else: | |
| return {"autogenerated": False} | |
| def preprocess(example): | |
| """Chain all preprocessing steps into one function to not fill cache.""" | |
| results = dict() | |
| results.update(get_hash(example)) | |
| results.update(line_stats(example)) | |
| return results | |
| def filter(example, uniques, args): | |
| """Filter dataset with heuristics.""" | |
| if not check_uniques(example, uniques): | |
| return False | |
| elif example["line_max"] > args.line_max: | |
| return False | |
| else: | |
| return True | |
| def save_shard(shard_tuple): | |
| """Save shard""" | |
| filename, shard = shard_tuple | |
| shard.to_parquet(filename) | |
| # Load dataset | |
| t_start = time.time() | |
| ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20) | |
| print(f"Time to load dataset: {time.time()-t_start:.2f}") | |
| # Run preprocessing | |
| t_start = time.time() | |
| ds = ds.map(preprocess, num_proc=args.num_workers) | |
| print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") | |
| print(ds) | |
| # Deduplicate hashes | |
| uniques = set(ds.unique("hash")) | |
| frac = len(uniques) / len(ds) | |
| print(f"Fraction of duplicates: {1-frac:.2%}") | |
| # Deduplicate data and apply heuristics | |
| t_start = time.time() | |
| ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) | |
| ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"]) | |
| print(f"Time to filter dataset: {time.time()-t_start:.2f}") | |
| print(f"Size of filtered dataset: {len(ds)}") | |
| # Save dataset in repo | |
| repo = Repository( | |
| local_dir=args.out_path, | |
| clone_from=args.org + "/" + args.repo_name, | |
| repo_type="dataset", | |
| private=True, | |
| use_auth_token=True, | |
| git_user="lvwerra", | |
| git_email="leandro.vonwerra@gmail.com", | |
| ) | |
| os.mkdir(args.out_path + "/data") | |
| if ds._indices is not None: | |
| dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data) | |
| else: | |
| dataset_nbytes = ds.data.nbytes | |
| num_shards = int(dataset_nbytes / args.shard_size) + 1 | |
| print(f"Number of shards: {num_shards}") | |
| t_start = time.time() | |
| shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards)) | |
| filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards)) | |
| with Pool(16) as p: | |
| list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards)) | |
| print(f"Time to save dataset: {time.time()-t_start:.2f}") | |
| # To push to hub run `git add/commit/push` inside dataset repo folder |