Datasets:
Commit
·
b5421ed
1
Parent(s):
fb6b308
refactor dataset
Browse files- .gitignore +2 -0
- download_utils.py +45 -0
- meta/meta.csv +0 -0
- meta/meta_test.csv +0 -0
- meta/meta_train.csv +0 -0
- odor.py +34 -24
.gitignore
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
.vscode/
|
| 2 |
.ipynb_checkpoints/
|
|
|
|
|
|
|
|
|
| 1 |
.vscode/
|
| 2 |
.ipynb_checkpoints/
|
| 3 |
+
*.jpg
|
| 4 |
+
__pycache__
|
download_utils.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
import requests
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
from multiprocessing.pool import ThreadPool
|
| 8 |
+
from multiprocessing import cpu_count
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from requests.exceptions import MissingSchema, Timeout, ConnectionError, InvalidSchema
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def download_one(entry, overwrite=False):
|
| 14 |
+
fn, uri, target_pth, retries = entry
|
| 15 |
+
fn = fn.replace("/", "_")
|
| 16 |
+
path = f'{target_pth}/{fn}'
|
| 17 |
+
if os.path.exists(path) and not overwrite:
|
| 18 |
+
return fn
|
| 19 |
+
|
| 20 |
+
for i in range(retries):
|
| 21 |
+
try:
|
| 22 |
+
r = requests.get(uri, stream=True, timeout=50)
|
| 23 |
+
except (MissingSchema, Timeout, ConnectionError, InvalidSchema):
|
| 24 |
+
time.sleep(i)
|
| 25 |
+
continue
|
| 26 |
+
|
| 27 |
+
if r.status_code == 200:
|
| 28 |
+
with open(path, 'wb') as f:
|
| 29 |
+
for chunk in r:
|
| 30 |
+
f.write(chunk)
|
| 31 |
+
return fn
|
| 32 |
+
else:
|
| 33 |
+
time.sleep(i)
|
| 34 |
+
continue
|
| 35 |
+
|
| 36 |
+
return fn
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def download_all(metadata_pth, target_pth, retries=3):
|
| 40 |
+
df = pd.read_csv(metadata_pth)
|
| 41 |
+
entries = [[*x, target_pth, retries] for x in df[['File Name', 'Image Credits']].values]
|
| 42 |
+
n_processes = max(1, cpu_count() - 1)
|
| 43 |
+
with ThreadPool(n_processes) as p:
|
| 44 |
+
results = list(tqdm(p.imap(download_one, entries), total=len(entries)))
|
| 45 |
+
return results
|
meta/meta.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
meta/meta_test.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
meta/meta_train.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
odor.py
CHANGED
|
@@ -21,6 +21,8 @@ import os
|
|
| 21 |
import pandas as pd
|
| 22 |
|
| 23 |
import datasets
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
_CITATION = """\
|
|
@@ -72,34 +74,32 @@ class ODOR(datasets.GeneratorBasedBuilder):
|
|
| 72 |
)
|
| 73 |
|
| 74 |
def _split_generators(self, dl_manager):
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
return [
|
| 80 |
datasets.SplitGenerator(
|
| 81 |
name=datasets.Split.TRAIN,
|
| 82 |
gen_kwargs={
|
| 83 |
"annotation_file_path": "annotations/train.json",
|
| 84 |
-
"metadata_file_path":
|
|
|
|
| 85 |
},
|
| 86 |
),
|
| 87 |
datasets.SplitGenerator(
|
| 88 |
name=datasets.Split.TEST,
|
| 89 |
gen_kwargs={
|
| 90 |
"annotation_file_path": "annotations/test.json",
|
| 91 |
-
"metadata_file_path":
|
|
|
|
| 92 |
},
|
| 93 |
),
|
| 94 |
]
|
| 95 |
|
| 96 |
-
def _generate_examples(self, annotation_file_path, metadata_file_path):
|
| 97 |
-
return None
|
| 98 |
-
# load metadata
|
| 99 |
-
# meta_df = pd.read_csv(metadata_file_path)
|
| 100 |
-
|
| 101 |
-
# files = download_images(meta_df)
|
| 102 |
-
|
| 103 |
|
| 104 |
def process_annot(annot, category_id_to_category):
|
| 105 |
return {
|
|
@@ -111,18 +111,18 @@ class ODOR(datasets.GeneratorBasedBuilder):
|
|
| 111 |
|
| 112 |
image_id_to_image = {}
|
| 113 |
idx = 0
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
file_name = os.path.basename(path)
|
| 118 |
-
if
|
| 119 |
-
annotations = json.load(f)
|
| 120 |
-
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
|
| 121 |
-
image_id_to_annotations = collections.defaultdict(list)
|
| 122 |
-
for annot in annotations["annotations"]:
|
| 123 |
-
image_id_to_annotations[annot["image_id"]].append(annot)
|
| 124 |
-
image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
|
| 125 |
-
elif file_name in image_id_to_image:
|
| 126 |
image = image_id_to_image[file_name]
|
| 127 |
objects = [
|
| 128 |
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
|
|
@@ -135,3 +135,13 @@ class ODOR(datasets.GeneratorBasedBuilder):
|
|
| 135 |
"objects": objects,
|
| 136 |
}
|
| 137 |
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
import pandas as pd
|
| 22 |
|
| 23 |
import datasets
|
| 24 |
+
import multiprocessing
|
| 25 |
+
from download_utils import download_all
|
| 26 |
|
| 27 |
|
| 28 |
_CITATION = """\
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
def _split_generators(self, dl_manager):
|
| 77 |
+
imgs_dir = f'{self.cache_dir}/images' # probably better to use the huggingface cache dir here
|
| 78 |
+
csv_pth = 'meta/meta.csv'
|
| 79 |
+
if not os.path.isdir(imgs_dir):
|
| 80 |
+
os.makedirs(imgs_dir)
|
| 81 |
+
img_pths = download_all(csv_pth, imgs_dir)
|
| 82 |
+
|
| 83 |
return [
|
| 84 |
datasets.SplitGenerator(
|
| 85 |
name=datasets.Split.TRAIN,
|
| 86 |
gen_kwargs={
|
| 87 |
"annotation_file_path": "annotations/train.json",
|
| 88 |
+
"metadata_file_path": csv_pth,
|
| 89 |
+
"img_dir": imgs_dir
|
| 90 |
},
|
| 91 |
),
|
| 92 |
datasets.SplitGenerator(
|
| 93 |
name=datasets.Split.TEST,
|
| 94 |
gen_kwargs={
|
| 95 |
"annotation_file_path": "annotations/test.json",
|
| 96 |
+
"metadata_file_path": csv_pth,
|
| 97 |
+
"img_dir": imgs_dir
|
| 98 |
},
|
| 99 |
),
|
| 100 |
]
|
| 101 |
|
| 102 |
+
def _generate_examples(self, annotation_file_path, metadata_file_path, img_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def process_annot(annot, category_id_to_category):
|
| 105 |
return {
|
|
|
|
| 111 |
|
| 112 |
image_id_to_image = {}
|
| 113 |
idx = 0
|
| 114 |
+
|
| 115 |
+
with open(annotation_file_path) as f:
|
| 116 |
+
annotations = json.load(f)
|
| 117 |
+
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
|
| 118 |
+
image_id_to_annotations = collections.defaultdict(list)
|
| 119 |
+
for annot in annotations["annotations"]:
|
| 120 |
+
image_id_to_annotations[annot["image_id"]].append(annot)
|
| 121 |
+
image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
|
| 122 |
+
|
| 123 |
+
for path in os.listdir(img_dir):
|
| 124 |
file_name = os.path.basename(path)
|
| 125 |
+
if file_name in image_id_to_image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
image = image_id_to_image[file_name]
|
| 127 |
objects = [
|
| 128 |
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
|
|
|
|
| 135 |
"objects": objects,
|
| 136 |
}
|
| 137 |
idx += 1
|
| 138 |
+
|
| 139 |
+
if __name__ == '__main__':
|
| 140 |
+
ds_builder = ODOR()
|
| 141 |
+
n_processes = min(1, multiprocessing.cpu_count()-1)
|
| 142 |
+
|
| 143 |
+
ds_builder.download_and_prepare()
|
| 144 |
+
|
| 145 |
+
ds = ds_builder.as_dataset()
|
| 146 |
+
|
| 147 |
+
print('ay')
|