jpcorb20 commited on
Commit
95a5716
·
verified ·
1 Parent(s): d50a24b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -7
README.md CHANGED
@@ -20,29 +20,50 @@ size_categories:
20
  - **Name**: SIMORD
21
  - **Full name / acronym**: SIMulated ORDer Extraction
22
  - **Purpose / use case**:
23
- SIMORD is intended to support research in extracting structured medical orders (e.g. medication orders, lab orders) from doctor-patient consultation transcripts. It complements the SYNUR dataset by focusing on the downstream task of converting spoken clinical dialogue into structured orders. :contentReference[oaicite:0]{index=0}
24
- - **Version**: As released with the paper (2025)
25
  - **License / usage terms**: CDLA-2.0-permissive
26
  - **Contact / Maintainer**: jcorbeil@microsoft.com
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ## 4. Data Fields / Format
29
 
30
  - **Input fields**:
31
- - `transcript`: string, the doctor-patient consultation transcript (with disfluencies, interruptions, etc.)
32
- - `schema`: metadata of the target order schema (possible order types, attributes)
 
 
33
 
34
- - **Output / label fields**:
35
- - A JSON (or list) of **order objects**
36
  - Each order object includes at least:
37
  * `order_type` (e.g. “medication”, “lab”)
38
  * `description` (string) — the order text (e.g. “lasix 40 milligrams a day”)
39
  * `reason` (string) — the clinical reason or indication for the order
40
  * `provenance` (e.g. list of token indices or spans) — mapping back to parts of the transcript
41
 
42
- - **Annotation format constraints**: Outputs must conform to a parsable JSON format consistent with the schema defined in each example.
 
 
 
 
43
 
44
  ## Citation
45
 
 
 
46
  @article{corbeil2025empowering,
47
  title={Empowering Healthcare Practitioners with Language Models: Structuring Speech Transcripts in Two Real-World Clinical Applications},
48
  author={Corbeil, Jean-Philippe and Abacha, Asma Ben and Michalopoulos, George and Swazinna, Phillip and Del-Agua, Miguel and Tremblay, Jerome and Daniel, Akila Jeeson and Bader, Cari and Cho, Yu-Cheng and Krishnan, Pooja and others},
 
20
  - **Name**: SIMORD
21
  - **Full name / acronym**: SIMulated ORDer Extraction
22
  - **Purpose / use case**:
23
+ SIMORD is intended to support research in extracting structured medical orders (e.g. medication orders, lab orders) from doctor-patient consultation transcripts.
24
+ - **Version**: As released with the EMNLP industry track paper (2025)
25
  - **License / usage terms**: CDLA-2.0-permissive
26
  - **Contact / Maintainer**: jcorbeil@microsoft.com
27
 
28
+ ## Building the dataset
29
+
30
+ ### Method 1: HF datasets
31
+
32
+ 1. Make sure you have `datasets==3.6.0` or less, otherwise builder is not supported in recent versions.
33
+ 2. Git clone and install requirements from `https://github.com/jpcorb20/mediqa-oe`
34
+ 3. Add `mediqa-oe` to python path `PYTHONPATH=$PYTHONPATH:/mypath/to/mediqa_oe` (UNIX).
35
+ 4. Run `load_dataset("microsoft/SIMORD", trust_remote_code=True)`, which will merge transcripts from ACI-Bench and Primock57 repos into the annotation files.
36
+
37
+ ### Method 2: GitHub script
38
+
39
+ Follow the steps in `https://github.com/jpcorb20/mediqa-oe` to merge transcripts from ACI-Bench and Primock57 into the annotation files provided in the repo.
40
+
41
  ## 4. Data Fields / Format
42
 
43
  - **Input fields**:
44
+ - `transcript` (dict of list): the doctor-patient consultation transcript as dict of three lists using those keys:
45
+ - `turn_id` (int): index of that turn.
46
+ - `speaker` (str): speaker of that turn *DOCTOR* or *PATIENT*.
47
+ - `transcript` (str): line of that turn.
48
 
49
+ - **Output fields**:
50
+ - A JSON (or list) of **expected orders**
51
  - Each order object includes at least:
52
  * `order_type` (e.g. “medication”, “lab”)
53
  * `description` (string) — the order text (e.g. “lasix 40 milligrams a day”)
54
  * `reason` (string) — the clinical reason or indication for the order
55
  * `provenance` (e.g. list of token indices or spans) — mapping back to parts of the transcript
56
 
57
+ ## Splits
58
+
59
+ - `train`: examples for in-context learning or fine-tuning.
60
+ - `test1`: test set used for the EMNLP 2025 industry track paper. Also, previously named `dev` set for MEDIQA-OE shared task of ClinicalNLP 2025.
61
+ - `test2`: test set for MEDIQA-OE shared task of ClinicalNLP 2025.
62
 
63
  ## Citation
64
 
65
+ If you use this dataset, please cite:
66
+
67
  @article{corbeil2025empowering,
68
  title={Empowering Healthcare Practitioners with Language Models: Structuring Speech Transcripts in Two Real-World Clinical Applications},
69
  author={Corbeil, Jean-Philippe and Abacha, Asma Ben and Michalopoulos, George and Swazinna, Phillip and Del-Agua, Miguel and Tremblay, Jerome and Daniel, Akila Jeeson and Bader, Cari and Cho, Yu-Cheng and Krishnan, Pooja and others},