File size: 2,089 Bytes
e80c560
 
 
 
 
 
8cc90da
 
 
 
 
 
 
 
 
e80c560
 
 
8cc90da
 
 
 
 
e80c560
 
 
f6e829e
 
 
 
 
 
 
a926b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e829e
 
 
a926b36
 
f6e829e
 
a926b36
 
 
 
e80c560
 
 
 
8cc90da
 
 
e80c560
 
 
8cc90da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512c354
8cc90da
 
 
512c354
 
5fcb5a5
512c354
8cc90da
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
task_categories:
- text-generation
language:
- ru
- ar
- en
- zh
- de
- fr
- es
- pt
- ja
- ko
tags:
- linux
- shell
- commands
- terminal
- multilingual
- development
- system-administration
pretty_name: LinLM
size_categories:
- n<1K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: ru
    dtype: string
  - name: ch
    dtype: string
  - name: eng
    dtype: string
  - name: de
    dtype: string
  - name: fr
    dtype: string
  - name: es
    dtype: string
  - name: pt
    dtype: string
  - name: ja
    dtype: string
  - name: ko
    dtype: string
  - name: ar
    dtype: string
  - name: completion
    dtype: string
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 328500
    num_examples: 910
  download_size: 160032
  dataset_size: 328500
---

## LinLM Dataset

A curated synthetic dataset for Linux command inference

Natural language description -> shell commands

Features: 

- Supports 10+ languages
- Arch Linux commands recognition
- Fine-tune LLM for development, system administration, file operations, Git, Docker, and more


## Usage

```python
from datasets import load_dataset

dataset = load_dataset("missvector/linux-commands")

def format_for_training(example):
    return {
        "prompt": f"Convert to Linux command: {example['eng']}",
        "completion": example['completion']
    }

training_data = dataset['train'].map(format_for_training)
```

## Out-of-Scope Use
- Not for production deployment without additional validation
- Commands should be reviewed before execution

## Related Projects

- [llama-dynamic-context](https://github.com/vifirsanova/llama-dynamic-context) - command inference tool tested with this dataset

## Citation

If you use this dataset in your research, please cite:

```bibtex
@misc{linuxcommands2024,
  author = {V. Firsanova},
  title = {LinLM Dataset},
  year = {2025},
  publisher = {Hugging Face Datasets},
  howpublished = {\url{https://huggingface.co/datasets/missvector/linux-commands}}
}
```