|
|
|
|
|
import webdataset as wds |
|
|
from pathlib import Path |
|
|
import torch |
|
|
from torchvision import transforms |
|
|
from PIL import Image |
|
|
import io |
|
|
|
|
|
def identity(x): |
|
|
return x |
|
|
|
|
|
def pil_decoder(key, data): |
|
|
"""Decodes image data from bytes to a PIL Image.""" |
|
|
if not key.endswith((".jpg", ".jpeg", ".png")): |
|
|
return None |
|
|
try: |
|
|
return Image.open(io.BytesIO(data)).convert("RGB") |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
def cls_decoder(key, data): |
|
|
"""Decodes class label from bytes.""" |
|
|
if not key.endswith(".cls"): |
|
|
return None |
|
|
try: |
|
|
return int(data.decode('utf-8')) |
|
|
except (ValueError, UnicodeDecodeError): |
|
|
return None |
|
|
|
|
|
class MiniImageNetCWebDataset(torch.utils.data.IterableDataset): |
|
|
""" |
|
|
A PyTorch Dataset for the WebDataset version of MiniImageNet-C. |
|
|
|
|
|
Args: |
|
|
root (str): The root directory of the WebDataset shards. |
|
|
corruption (str): The corruption type to load (e.g., 'gaussian_noise'). |
|
|
severity (int): The severity level (should be 5 for MiniImageNet-C). |
|
|
transform (callable, optional): A function/transform that takes in a PIL image |
|
|
and returns a transformed version. E.g, `transforms.ToTensor()`. |
|
|
target_transform (callable, optional): A function/transform that takes in the |
|
|
target and transforms it. |
|
|
""" |
|
|
def __init__(self, root, corruption, severity=5, transform=None, target_transform=None): |
|
|
self.root = Path(root) |
|
|
self.corruption = corruption |
|
|
self.severity = severity |
|
|
self.transform = transform if transform is not None else identity |
|
|
self.target_transform = target_transform if target_transform is not None else identity |
|
|
|
|
|
self.shard_path = self.root / self.corruption / str(self.severity) |
|
|
if not self.shard_path.exists(): |
|
|
raise FileNotFoundError(f"Shards not found at: {self.shard_path}") |
|
|
|
|
|
shard_urls = [str(p) for p in sorted(self.shard_path.glob("*.tar"))] |
|
|
if not shard_urls: |
|
|
raise FileNotFoundError(f"No .tar shards found in {self.shard_path}") |
|
|
|
|
|
self.dataset = ( |
|
|
wds.WebDataset(shard_urls, shardshuffle=True) |
|
|
.decode(pil_decoder, cls_decoder) |
|
|
.to_tuple("jpg", "cls") |
|
|
.map(self.apply_transforms) |
|
|
) |
|
|
|
|
|
def apply_transforms(self, sample): |
|
|
image, target = sample |
|
|
return self.transform(image), self.target_transform(target) |
|
|
|
|
|
def __iter__(self): |
|
|
return iter(self.dataset) |
|
|
|
|
|
def __len__(self): |
|
|
|
|
|
|
|
|
|
|
|
return 50 * 1000 |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
print("Example of how to use MiniImageNetCWebDataset") |
|
|
|
|
|
|
|
|
|
|
|
dataset_root = "../data/mini-imagenet-c-webdataset" |
|
|
if not Path(dataset_root).exists(): |
|
|
print(f"\nERROR: Example dataset root '{dataset_root}' not found.") |
|
|
print("Please run 'python data/scripts/convert_to_webdataset.py' first.") |
|
|
exit() |
|
|
|
|
|
|
|
|
image_transform = transforms.Compose([ |
|
|
transforms.Resize((224, 224)), |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
]) |
|
|
|
|
|
|
|
|
try: |
|
|
corruption_type = 'gaussian_noise' |
|
|
print(f"\nLoading dataset for corruption: '{corruption_type}'") |
|
|
|
|
|
dataset = MiniImageNetCWebDataset( |
|
|
root=dataset_root, |
|
|
corruption=corruption_type, |
|
|
transform=image_transform |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4) |
|
|
|
|
|
|
|
|
print("Iterating through a few batches...") |
|
|
for i, (images, labels) in enumerate(dataloader): |
|
|
if i >= 3: |
|
|
break |
|
|
print(f" Batch {i+1}:") |
|
|
print(f" Images shape: {images.shape}") |
|
|
print(f" Labels shape: {labels.shape}") |
|
|
print(f" Sample labels: {labels[:4].tolist()}") |
|
|
|
|
|
print("\nExample finished successfully!") |
|
|
|
|
|
except FileNotFoundError as e: |
|
|
print(f"\nERROR: Could not run example. {e}") |
|
|
print("Please ensure the WebDataset has been generated and the paths are correct.") |
|
|
|
|
|
except ImportError: |
|
|
print("\nERROR: 'webdataset' library not found.") |
|
|
print("Please install it by running: pip install webdataset") |
|
|
|
|
|
|