mini-imagenet-c / mini_imagenet_c_loader.py
niuniandaji's picture
Upload mini_imagenet_c_loader.py (#2)
3dbf358 verified
import webdataset as wds
from pathlib import Path
import torch
from torchvision import transforms
from PIL import Image
import io
def identity(x):
return x
def pil_decoder(key, data):
"""Decodes image data from bytes to a PIL Image."""
if not key.endswith((".jpg", ".jpeg", ".png")):
return None
try:
return Image.open(io.BytesIO(data)).convert("RGB")
except Exception:
return None
def cls_decoder(key, data):
"""Decodes class label from bytes."""
if not key.endswith(".cls"):
return None
try:
return int(data.decode('utf-8'))
except (ValueError, UnicodeDecodeError):
return None
class MiniImageNetCWebDataset(torch.utils.data.IterableDataset):
"""
A PyTorch Dataset for the WebDataset version of MiniImageNet-C.
Args:
root (str): The root directory of the WebDataset shards.
corruption (str): The corruption type to load (e.g., 'gaussian_noise').
severity (int): The severity level (should be 5 for MiniImageNet-C).
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, `transforms.ToTensor()`.
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
def __init__(self, root, corruption, severity=5, transform=None, target_transform=None):
self.root = Path(root)
self.corruption = corruption
self.severity = severity
self.transform = transform if transform is not None else identity
self.target_transform = target_transform if target_transform is not None else identity
self.shard_path = self.root / self.corruption / str(self.severity)
if not self.shard_path.exists():
raise FileNotFoundError(f"Shards not found at: {self.shard_path}")
shard_urls = [str(p) for p in sorted(self.shard_path.glob("*.tar"))]
if not shard_urls:
raise FileNotFoundError(f"No .tar shards found in {self.shard_path}")
self.dataset = (
wds.WebDataset(shard_urls, shardshuffle=True)
.decode(pil_decoder, cls_decoder)
.to_tuple("jpg", "cls")
.map(self.apply_transforms)
)
def apply_transforms(self, sample):
image, target = sample
return self.transform(image), self.target_transform(target)
def __iter__(self):
return iter(self.dataset)
def __len__(self):
# The length of a WebDataset is not trivially known beforehand.
# You can estimate it or, if needed, iterate through it once to count.
# For Mini-ImageNet-C, each class has 50 images, and there are 1000 classes.
return 50 * 1000
# Example Usage
if __name__ == '__main__':
print("Example of how to use MiniImageNetCWebDataset")
# This assumes you have a 'mini-imagenet-c-webdataset' directory
# created by the convert_to_webdataset.py script.
dataset_root = "../data/mini-imagenet-c-webdataset"
if not Path(dataset_root).exists():
print(f"\nERROR: Example dataset root '{dataset_root}' not found.")
print("Please run 'python data/scripts/convert_to_webdataset.py' first.")
exit()
# Define transformations for the images
image_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 1. Create a dataset for a specific corruption
try:
corruption_type = 'gaussian_noise'
print(f"\nLoading dataset for corruption: '{corruption_type}'")
dataset = MiniImageNetCWebDataset(
root=dataset_root,
corruption=corruption_type,
transform=image_transform
)
# 2. Create a DataLoader
# WebDataset is designed for streaming, so shuffling is handled differently.
# For shuffling, you typically shuffle the shard URLs and the samples within each shard.
# The loader here provides a basic sequential stream.
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4)
# 3. Iterate through a few batches
print("Iterating through a few batches...")
for i, (images, labels) in enumerate(dataloader):
if i >= 3:
break
print(f" Batch {i+1}:")
print(f" Images shape: {images.shape}")
print(f" Labels shape: {labels.shape}")
print(f" Sample labels: {labels[:4].tolist()}")
print("\nExample finished successfully!")
except FileNotFoundError as e:
print(f"\nERROR: Could not run example. {e}")
print("Please ensure the WebDataset has been generated and the paths are correct.")
except ImportError:
print("\nERROR: 'webdataset' library not found.")
print("Please install it by running: pip install webdataset")