File size: 8,952 Bytes
9ff9d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gc
import os
from collections import namedtuple
from pathlib import Path
import warnings

from diffusers.image_processor import VaeImageProcessor
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from huggingface_hub import snapshot_download
import yaml
import openvino as ov
import torch

from model.cloth_masker import AutoMasker
from model.pipeline import CatVTONPipeline

MODEL_DIR = Path("models")
VAE_ENCODER_PATH = MODEL_DIR / "vae_encoder.xml"
VAE_DECODER_PATH = MODEL_DIR / "vae_decoder.xml"
UNET_PATH = MODEL_DIR / "unet.xml"
DENSEPOSE_PROCESSOR_PATH = MODEL_DIR / "densepose_processor.xml"
SCHP_PROCESSOR_ATR = MODEL_DIR / "schp_processor_atr.xml"
SCHP_PROCESSOR_LIP = MODEL_DIR / "schp_processor_lip.xml"


def convert(model: torch.nn.Module, xml_path: str, example_input):
    xml_path = Path(xml_path)
    if not xml_path.exists():
        xml_path.parent.mkdir(parents=True, exist_ok=True)
        model.eval()
        with torch.no_grad():
            converted_model = ov.convert_model(model, example_input=example_input)
        ov.save_model(converted_model, xml_path)

        # cleanup memory
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
        torch.jit._state._clear_class_state()


class VaeEncoder(torch.nn.Module):
    def __init__(self, vae):
        super().__init__()
        self.vae = vae

    def forward(self, x):
        return {"latent_parameters": self.vae.encode(x)["latent_dist"].parameters}


class VaeDecoder(torch.nn.Module):
    def __init__(self, vae):
        super().__init__()
        self.vae = vae

    def forward(self, latents):
        return self.vae.decode(latents)


class UNetWrapper(torch.nn.Module):
    def __init__(self, unet):
        super().__init__()
        self.unet = unet

    def forward(self, sample=None, timestep=None, encoder_hidden_states=None, return_dict=None):
        result = self.unet(sample=sample, timestep=timestep, encoder_hidden_states=encoder_hidden_states, return_dict=False)
        return result


def download_models():
    resume_path = "zhengchong/CatVTON"
    base_model_path = "booksforcharlie/stable-diffusion-inpainting"
    repo_path = snapshot_download(repo_id=resume_path, local_dir=MODEL_DIR)

    pipeline = CatVTONPipeline(base_ckpt=base_model_path, attn_ckpt=repo_path, attn_ckpt_version="mix", use_tf32=True, device="cpu")

    # fix default config to use cpu
    with open(f"{repo_path}/DensePose/densepose_rcnn_R_50_FPN_s1x.yaml", "r") as fp:
        data = yaml.safe_load(fp)

    data["MODEL"].update({"DEVICE": "cpu"})

    with open(f"{repo_path}/DensePose/densepose_rcnn_R_50_FPN_s1x.yaml", "w") as fp:
        yaml.safe_dump(data, fp)

    mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
    automasker = AutoMasker(
        densepose_ckpt=os.path.join(repo_path, "DensePose"),
        schp_ckpt=os.path.join(repo_path, "SCHP"),
        device="cpu",
    )
    return pipeline, mask_processor, automasker


def convert_pipeline_models(pipeline):
    convert(VaeEncoder(pipeline.vae), VAE_ENCODER_PATH, torch.zeros(1, 3, 1024, 768))
    convert(VaeDecoder(pipeline.vae), VAE_DECODER_PATH, torch.zeros(1, 4, 128, 96))
    del pipeline.vae

    inpainting_latent_model_input = torch.rand(2, 9, 256, 96)
    timestep = torch.tensor(0)
    encoder_hidden_states = torch.Tensor(0)
    example_input = (inpainting_latent_model_input, timestep, encoder_hidden_states)

    convert(UNetWrapper(pipeline.unet), UNET_PATH, example_input)
    del pipeline.unet
    gc.collect()


def convert_automasker_models(automasker):
    from detectron2.export import TracingAdapter  # it's detectron2 from CatVTON repo

    def inference(model, inputs):
        # use do_postprocess=False so it returns ROI mask
        inst = model.inference(inputs, do_postprocess=False)[0]
        return [{"instances": inst}]

    tracing_input = [{"image": torch.rand([3, 800, 800], dtype=torch.float32)}]
    warnings.filterwarnings("ignore")
    traceable_model = TracingAdapter(automasker.densepose_processor.predictor.model, tracing_input, inference)

    convert(traceable_model, DENSEPOSE_PROCESSOR_PATH, tracing_input[0]["image"])
    del automasker.densepose_processor.predictor.model

    convert(automasker.schp_processor_atr.model, SCHP_PROCESSOR_ATR, torch.rand([1, 3, 512, 512], dtype=torch.float32))
    convert(automasker.schp_processor_lip.model, SCHP_PROCESSOR_LIP, torch.rand([1, 3, 473, 473], dtype=torch.float32))
    del automasker.schp_processor_atr.model
    del automasker.schp_processor_lip.model
    gc.collect()


class VAEWrapper(torch.nn.Module):
    def __init__(self, vae_encoder, vae_decoder, scaling_factor):
        super().__init__()
        self.vae_enocder = vae_encoder
        self.vae_decoder = vae_decoder
        self.device = "cpu"
        self.dtype = torch.float32
        self.config = namedtuple("VAEConfig", ["scaling_factor"])(scaling_factor)

    def encode(self, pixel_values):
        ov_outputs = self.vae_enocder(pixel_values).to_dict()

        model_outputs = {}
        for key, value in ov_outputs.items():
            model_outputs[next(iter(key.names))] = torch.from_numpy(value)

        result = namedtuple("VAE", "latent_dist")(DiagonalGaussianDistribution(parameters=model_outputs.pop("latent_parameters")))

        return result

    def decode(self, latents):
        outs = self.vae_decoder(latents)
        outs = namedtuple("VAE", "sample")(torch.from_numpy(outs[0]))
        return outs


class ConvUnetWrapper(torch.nn.Module):
    def __init__(self, unet):
        super().__init__()
        self.unet = unet

    def forward(self, sample, timestep, encoder_hidden_states=None, **kwargs):
        outputs = self.unet(
            {
                "sample": sample,
                "timestep": timestep,
            },
        )

        return [torch.from_numpy(outputs[0])]


class ConvDenseposeProcessorWrapper(torch.nn.Module):
    def __init__(self, densepose_processor):
        super().__init__()
        self.densepose_processor = densepose_processor

    def forward(self, sample, **kwargs):
        from detectron2.structures import Instances, Boxes  # it's detectron2 from CatVTON repo

        outputs = self.densepose_processor(sample[0]["image"])
        boxes = outputs[0]
        classes = outputs[1]
        has_mask = len(outputs) >= 5
        scores = outputs[2 if not has_mask else 3]
        print(scores)
        model_input_size = (
            int(outputs[3 if not has_mask else 4][0]),
            int(outputs[3 if not has_mask else 4][1]),
        )
        filtered_detections = scores >= 0
        boxes = Boxes(boxes[filtered_detections])
        scores = scores[filtered_detections]
        classes = classes[filtered_detections]
        out_dict = {"pred_boxes": boxes, "scores": scores, "pred_classes": classes}

        instances = Instances(model_input_size, **out_dict)

        return [{"instances": instances}]


class ConvSchpProcessorWrapper(torch.nn.Module):
    def __init__(self, schp_processor):
        super().__init__()
        self.schp_processor = schp_processor

    def forward(self, image):
        outputs = self.schp_processor(image)

        return torch.from_numpy(outputs[0])


def get_compiled_pipeline(pipeline, core, device, vae_encoder_path, vae_decoder_path, unet_path, vae_scaling_factor):
    compiled_unet = core.compile_model(unet_path, device.value)
    compiled_vae_encoder = core.compile_model(vae_encoder_path, device.value)
    compiled_vae_decoder = core.compile_model(vae_decoder_path, device.value)

    pipeline.vae = VAEWrapper(compiled_vae_encoder, compiled_vae_decoder, vae_scaling_factor)
    pipeline.unet = ConvUnetWrapper(compiled_unet)

    return pipeline


def get_compiled_automasker(automasker, core, device, densepose_processor_path, schp_processor_atr_path, schp_processor_lip_path):
    compiled_densepose_processor = core.compile_model(densepose_processor_path, device.value)
    compiled_schp_processor_atr = core.compile_model(schp_processor_atr_path, device.value)
    compiled_schp_processor_lip = core.compile_model(schp_processor_lip_path, device.value)

    automasker.densepose_processor.predictor.model = ConvDenseposeProcessorWrapper(compiled_densepose_processor)
    automasker.schp_processor_atr.model = ConvSchpProcessorWrapper(compiled_schp_processor_atr)
    automasker.schp_processor_lip.model = ConvSchpProcessorWrapper(compiled_schp_processor_lip)

    return automasker


def get_pipeline_selection_option(is_optimized_pipe_available=False):
    import ipywidgets as widgets

    use_quantized_models = widgets.Checkbox(
        value=is_optimized_pipe_available,
        description="Use quantized models",
        disabled=not is_optimized_pipe_available,
    )
    return use_quantized_models