| from typing import Any | |
| from pathlib import Path | |
| import pickle | |
| from tqdm.notebook import tqdm | |
| from transformers import set_seed | |
| import numpy as np | |
| import openvino as ov | |
| from PIL import Image | |
| import torch | |
| import nncf | |
| from ov_catvton_helper import ( | |
| MODEL_DIR, | |
| VAE_ENCODER_PATH, | |
| VAE_DECODER_PATH, | |
| UNET_PATH, | |
| DENSEPOSE_PROCESSOR_PATH, | |
| SCHP_PROCESSOR_ATR, | |
| SCHP_PROCESSOR_LIP, | |
| ) | |
| set_seed(42) | |
| NUM_INFERENCE_STEPS = 50 | |
| GUIDANCE_SCALE = 2.5 | |
| GENERATOR = torch.Generator(device="cpu").manual_seed(42) | |
| VAE_ENCODER_INT4_PATH = MODEL_DIR / "vae_encoder_int4.xml" | |
| VAE_DECODER_INT4_PATH = MODEL_DIR / "vae_decoder_int4.xml" | |
| UNET_INT8_PATH = MODEL_DIR / "unet_int8.xml" | |
| DENSEPOSE_PROCESSOR_INT4_PATH = MODEL_DIR / "densepose_processor_int4.xml" | |
| SCHP_PROCESSOR_ATR_INT4 = MODEL_DIR / "schp_processor_atr_int4.xml" | |
| SCHP_PROCESSOR_LIP_INT4 = MODEL_DIR / "schp_processor_lip_int4.xml" | |
| class CompiledModelDecorator(ov.CompiledModel): | |
| def __init__( | |
| self, | |
| compiled_model: ov.CompiledModel, | |
| data_cache: list[Any] = None, | |
| keep_prob: float = 1.0, | |
| ): | |
| super().__init__(compiled_model) | |
| self.data_cache = data_cache if data_cache is not None else [] | |
| self.keep_prob = keep_prob | |
| def __call__(self, *args, **kwargs): | |
| if np.random.rand() <= self.keep_prob: | |
| self.data_cache.append(*args) | |
| return super().__call__(*args, **kwargs) | |
| def collect_calibration_data(pipeline, automasker, mask_processor, dataset, subset_size): | |
| calibration_dataset_filepath = Path("calibration_data") / f"{subset_size}.pkl" | |
| calibration_dataset_filepath.parent.mkdir(exist_ok=True, parents=True) | |
| if not calibration_dataset_filepath.exists(): | |
| original_unet = pipeline.unet.unet | |
| pipeline.unet.unet = CompiledModelDecorator(original_unet) | |
| calibration_dataset = [] | |
| pbar = tqdm(total=subset_size, desc="Collecting calibration dataset") | |
| for data in dataset: | |
| person_image_path, cloth_image_path = data | |
| person_image = Image.open(person_image_path) | |
| cloth_image = Image.open(cloth_image_path) | |
| cloth_type = "upper" if "upper" in person_image_path.as_posix() else "overall" | |
| mask = automasker(person_image, cloth_type)["mask"] | |
| mask = mask_processor.blur(mask, blur_factor=9) | |
| pipeline( | |
| image=person_image, | |
| condition_image=cloth_image, | |
| mask=mask, | |
| num_inference_steps=NUM_INFERENCE_STEPS, | |
| guidance_scale=GUIDANCE_SCALE, | |
| generator=GENERATOR, | |
| ) | |
| collected_subset_size = len(pipeline.unet.unet.data_cache) | |
| pbar.update(NUM_INFERENCE_STEPS) | |
| if collected_subset_size >= subset_size: | |
| break | |
| calibration_dataset = pipeline.unet.unet.data_cache | |
| pipeline.unet.unet = original_unet | |
| with open(calibration_dataset_filepath, "wb") as f: | |
| pickle.dump(calibration_dataset, f) | |
| else: | |
| with open(calibration_dataset_filepath, "rb") as f: | |
| calibration_dataset = pickle.load(f) | |
| return calibration_dataset | |
| def compress_model(core, model_path, save_path, group_size=128, ratio=0.8): | |
| if not save_path.exists(): | |
| print(f"{model_path.stem} compression started") | |
| print(f"Compression parameters:\n\tmode = {nncf.CompressWeightsMode.INT4_SYM}\n\tratio = {ratio}\n\tgroup_size = {group_size}") | |
| model = core.read_model(model_path) | |
| compressed_model = nncf.compress_weights( | |
| model, | |
| mode=nncf.CompressWeightsMode.INT4_SYM, | |
| ratio=ratio, | |
| group_size=group_size, | |
| ) | |
| ov.save_model(compressed_model, save_path) | |
| print(f"{model_path.stem} compression finished") | |
| print(f"Compressed {model_path.stem} can be found in {save_path}") | |
| def compress_models(core, group_size=128, ratio=0.8): | |
| compress_model(core, VAE_ENCODER_PATH, VAE_ENCODER_INT4_PATH, group_size, ratio) | |
| compress_model(core, VAE_DECODER_PATH, VAE_DECODER_INT4_PATH, group_size, ratio) | |
| compress_model(core, DENSEPOSE_PROCESSOR_PATH, DENSEPOSE_PROCESSOR_INT4_PATH, group_size, ratio) | |
| compress_model(core, SCHP_PROCESSOR_ATR, SCHP_PROCESSOR_ATR_INT4, group_size, ratio) | |
| compress_model(core, SCHP_PROCESSOR_LIP, SCHP_PROCESSOR_LIP_INT4, group_size, ratio) | |
| def compare_models_size(): | |
| fp16_model_paths = [ | |
| VAE_ENCODER_PATH, | |
| VAE_DECODER_PATH, | |
| UNET_PATH, | |
| DENSEPOSE_PROCESSOR_PATH, | |
| SCHP_PROCESSOR_ATR, | |
| SCHP_PROCESSOR_LIP, | |
| ] | |
| optimized_models = [ | |
| VAE_ENCODER_INT4_PATH, | |
| VAE_DECODER_INT4_PATH, | |
| UNET_INT8_PATH, | |
| DENSEPOSE_PROCESSOR_INT4_PATH, | |
| SCHP_PROCESSOR_ATR_INT4, | |
| SCHP_PROCESSOR_LIP_INT4, | |
| ] | |
| for fp16_path, optimized_path in zip(fp16_model_paths, optimized_models): | |
| if not fp16_path.exists(): | |
| continue | |
| fp16_ir_model_size = fp16_path.with_suffix(".bin").stat().st_size | |
| optimized_model_size = optimized_path.with_suffix(".bin").stat().st_size | |
| print(f"{fp16_path.stem} compression rate: {fp16_ir_model_size / optimized_model_size:.3f}") | |