import gc import os from collections import namedtuple from pathlib import Path import warnings from diffusers.image_processor import VaeImageProcessor from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution from huggingface_hub import snapshot_download import yaml import openvino as ov import torch from model.cloth_masker import AutoMasker from model.pipeline import CatVTONPipeline MODEL_DIR = Path("models") VAE_ENCODER_PATH = MODEL_DIR / "vae_encoder.xml" VAE_DECODER_PATH = MODEL_DIR / "vae_decoder.xml" UNET_PATH = MODEL_DIR / "unet.xml" DENSEPOSE_PROCESSOR_PATH = MODEL_DIR / "densepose_processor.xml" SCHP_PROCESSOR_ATR = MODEL_DIR / "schp_processor_atr.xml" SCHP_PROCESSOR_LIP = MODEL_DIR / "schp_processor_lip.xml" def convert(model: torch.nn.Module, xml_path: str, example_input): xml_path = Path(xml_path) if not xml_path.exists(): xml_path.parent.mkdir(parents=True, exist_ok=True) model.eval() with torch.no_grad(): converted_model = ov.convert_model(model, example_input=example_input) ov.save_model(converted_model, xml_path) # cleanup memory torch._C._jit_clear_class_registry() torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() torch.jit._state._clear_class_state() class VaeEncoder(torch.nn.Module): def __init__(self, vae): super().__init__() self.vae = vae def forward(self, x): return {"latent_parameters": self.vae.encode(x)["latent_dist"].parameters} class VaeDecoder(torch.nn.Module): def __init__(self, vae): super().__init__() self.vae = vae def forward(self, latents): return self.vae.decode(latents) class UNetWrapper(torch.nn.Module): def __init__(self, unet): super().__init__() self.unet = unet def forward(self, sample=None, timestep=None, encoder_hidden_states=None, return_dict=None): result = self.unet(sample=sample, timestep=timestep, encoder_hidden_states=encoder_hidden_states, return_dict=False) return result def download_models(): resume_path = "zhengchong/CatVTON" base_model_path = "booksforcharlie/stable-diffusion-inpainting" repo_path = snapshot_download(repo_id=resume_path, local_dir=MODEL_DIR) pipeline = CatVTONPipeline(base_ckpt=base_model_path, attn_ckpt=repo_path, attn_ckpt_version="mix", use_tf32=True, device="cpu") # fix default config to use cpu with open(f"{repo_path}/DensePose/densepose_rcnn_R_50_FPN_s1x.yaml", "r") as fp: data = yaml.safe_load(fp) data["MODEL"].update({"DEVICE": "cpu"}) with open(f"{repo_path}/DensePose/densepose_rcnn_R_50_FPN_s1x.yaml", "w") as fp: yaml.safe_dump(data, fp) mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) automasker = AutoMasker( densepose_ckpt=os.path.join(repo_path, "DensePose"), schp_ckpt=os.path.join(repo_path, "SCHP"), device="cpu", ) return pipeline, mask_processor, automasker def convert_pipeline_models(pipeline): convert(VaeEncoder(pipeline.vae), VAE_ENCODER_PATH, torch.zeros(1, 3, 1024, 768)) convert(VaeDecoder(pipeline.vae), VAE_DECODER_PATH, torch.zeros(1, 4, 128, 96)) del pipeline.vae inpainting_latent_model_input = torch.rand(2, 9, 256, 96) timestep = torch.tensor(0) encoder_hidden_states = torch.Tensor(0) example_input = (inpainting_latent_model_input, timestep, encoder_hidden_states) convert(UNetWrapper(pipeline.unet), UNET_PATH, example_input) del pipeline.unet gc.collect() def convert_automasker_models(automasker): from detectron2.export import TracingAdapter # it's detectron2 from CatVTON repo def inference(model, inputs): # use do_postprocess=False so it returns ROI mask inst = model.inference(inputs, do_postprocess=False)[0] return [{"instances": inst}] tracing_input = [{"image": torch.rand([3, 800, 800], dtype=torch.float32)}] warnings.filterwarnings("ignore") traceable_model = TracingAdapter(automasker.densepose_processor.predictor.model, tracing_input, inference) convert(traceable_model, DENSEPOSE_PROCESSOR_PATH, tracing_input[0]["image"]) del automasker.densepose_processor.predictor.model convert(automasker.schp_processor_atr.model, SCHP_PROCESSOR_ATR, torch.rand([1, 3, 512, 512], dtype=torch.float32)) convert(automasker.schp_processor_lip.model, SCHP_PROCESSOR_LIP, torch.rand([1, 3, 473, 473], dtype=torch.float32)) del automasker.schp_processor_atr.model del automasker.schp_processor_lip.model gc.collect() class VAEWrapper(torch.nn.Module): def __init__(self, vae_encoder, vae_decoder, scaling_factor): super().__init__() self.vae_enocder = vae_encoder self.vae_decoder = vae_decoder self.device = "cpu" self.dtype = torch.float32 self.config = namedtuple("VAEConfig", ["scaling_factor"])(scaling_factor) def encode(self, pixel_values): ov_outputs = self.vae_enocder(pixel_values).to_dict() model_outputs = {} for key, value in ov_outputs.items(): model_outputs[next(iter(key.names))] = torch.from_numpy(value) result = namedtuple("VAE", "latent_dist")(DiagonalGaussianDistribution(parameters=model_outputs.pop("latent_parameters"))) return result def decode(self, latents): outs = self.vae_decoder(latents) outs = namedtuple("VAE", "sample")(torch.from_numpy(outs[0])) return outs class ConvUnetWrapper(torch.nn.Module): def __init__(self, unet): super().__init__() self.unet = unet def forward(self, sample, timestep, encoder_hidden_states=None, **kwargs): outputs = self.unet( { "sample": sample, "timestep": timestep, }, ) return [torch.from_numpy(outputs[0])] class ConvDenseposeProcessorWrapper(torch.nn.Module): def __init__(self, densepose_processor): super().__init__() self.densepose_processor = densepose_processor def forward(self, sample, **kwargs): from detectron2.structures import Instances, Boxes # it's detectron2 from CatVTON repo outputs = self.densepose_processor(sample[0]["image"]) boxes = outputs[0] classes = outputs[1] has_mask = len(outputs) >= 5 scores = outputs[2 if not has_mask else 3] print(scores) model_input_size = ( int(outputs[3 if not has_mask else 4][0]), int(outputs[3 if not has_mask else 4][1]), ) filtered_detections = scores >= 0 boxes = Boxes(boxes[filtered_detections]) scores = scores[filtered_detections] classes = classes[filtered_detections] out_dict = {"pred_boxes": boxes, "scores": scores, "pred_classes": classes} instances = Instances(model_input_size, **out_dict) return [{"instances": instances}] class ConvSchpProcessorWrapper(torch.nn.Module): def __init__(self, schp_processor): super().__init__() self.schp_processor = schp_processor def forward(self, image): outputs = self.schp_processor(image) return torch.from_numpy(outputs[0]) def get_compiled_pipeline(pipeline, core, device, vae_encoder_path, vae_decoder_path, unet_path, vae_scaling_factor): compiled_unet = core.compile_model(unet_path, device.value) compiled_vae_encoder = core.compile_model(vae_encoder_path, device.value) compiled_vae_decoder = core.compile_model(vae_decoder_path, device.value) pipeline.vae = VAEWrapper(compiled_vae_encoder, compiled_vae_decoder, vae_scaling_factor) pipeline.unet = ConvUnetWrapper(compiled_unet) return pipeline def get_compiled_automasker(automasker, core, device, densepose_processor_path, schp_processor_atr_path, schp_processor_lip_path): compiled_densepose_processor = core.compile_model(densepose_processor_path, device.value) compiled_schp_processor_atr = core.compile_model(schp_processor_atr_path, device.value) compiled_schp_processor_lip = core.compile_model(schp_processor_lip_path, device.value) automasker.densepose_processor.predictor.model = ConvDenseposeProcessorWrapper(compiled_densepose_processor) automasker.schp_processor_atr.model = ConvSchpProcessorWrapper(compiled_schp_processor_atr) automasker.schp_processor_lip.model = ConvSchpProcessorWrapper(compiled_schp_processor_lip) return automasker def get_pipeline_selection_option(is_optimized_pipe_available=False): import ipywidgets as widgets use_quantized_models = widgets.Checkbox( value=is_optimized_pipe_available, description="Use quantized models", disabled=not is_optimized_pipe_available, ) return use_quantized_models