--- license: cc-by-4.0 task_categories: - visual-question-answering language: - en tags: - multimodal large language models - face perception --- # FaceBench Dataset - **Paper:** https://ieeexplore.ieee.org/document/11092731 - **Repository:** https://github.com/CVI-SZU/FaceBench - **Face-LLaVA:** https://huggingface.co/wxqlab/face-llava-v1.5-13b ## Dataset Summary We release the FaceBench dataset, which consists of 49,919 visual question-answering (VQA) pairs for evaluation and 23,841 pairs for fine-tuning. FaceBench is built upon a hierarchical facial attribute structure, which encompasses five views with up to three levels of attributes, totaling over 210 attributes and 700 attribute values. ## Dataset Example ```json { "question_id": "beard_q0", "question_type": "TFQ", "image_id": "test-CelebA-HQ-1279.jpg", "text": "Does the person in the image have a beard?", "instruction": "Please directly select the appropriate option from the given choices based on the image.", "options": ["Yes", "No", "Information not visible"], "conditions": {"option Y": ["beard_q1", "beard_q2", "beard_q3", "beard_q4"], "option N": []}, "gt_answer": "Yes", "metadata": {"image_source": "CelebA-HQ", "view": "Appearance", "attribute_level": "level 1"} } ``` ## Citation ``` @inproceedings{wang2025facebench, title={FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs}, author={Wang, Xiaoqin and Ma, Xusen and Hou, Xianxu and Ding, Meidan and Li, Yudong and Chen, Junliang and Chen, Wenting and Peng, Xiaoyang and Shen, Linlin}, booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference}, pages={9154--9164}, year={2025} } ```