hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
bc710066cef80510ad81cb68d1ed3e70cec4fc2d
905
py
Python
bert_e/workflow/gitwaterflow/utils.py
tcarmet/bert-e
8e0623d9a8c7bd111790d72307862167eca18a23
[ "Apache-2.0" ]
null
null
null
bert_e/workflow/gitwaterflow/utils.py
tcarmet/bert-e
8e0623d9a8c7bd111790d72307862167eca18a23
[ "Apache-2.0" ]
35
2020-08-26T09:25:56.000Z
2022-01-10T20:38:15.000Z
bert_e/workflow/gitwaterflow/utils.py
tcarmet/bert-e
8e0623d9a8c7bd111790d72307862167eca18a23
[ "Apache-2.0" ]
2
2021-08-17T15:56:50.000Z
2022-01-05T19:26:48.000Z
def bypass_incompatible_branch(job): return (job.settings.bypass_incompatible_branch or job.author_bypass.get('bypass_incompatible_branch', False)) def bypass_peer_approval(job): return (job.settings.bypass_peer_approval or job.author_bypass.get('bypass_peer_approval', False)) def bypass_leader_approval(job): return (job.settings.bypass_leader_approval or job.author_bypass.get('bypass_leader_approval', False)) def bypass_author_approval(job): return (job.settings.bypass_author_approval or job.author_bypass.get('bypass_author_approval', False)) def bypass_build_status(job): return (job.settings.bypass_build_status or job.author_bypass.get('bypass_build_status', False)) def bypass_jira_check(job): return (job.settings.bypass_jira_check or job.author_bypass.get('bypass_jira_check', False))
30.166667
71
0.742541
120
905
5.25
0.15
0.085714
0.114286
0.190476
0.571429
0.447619
0.161905
0
0
0
0
0
0.164641
905
29
72
31.206897
0.833333
0
0
0
0
0
0.139381
0.077434
0
0
0
0
0
1
0.333333
false
1
0
0.333333
0.666667
0
0
0
0
null
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
1
0
1
1
0
0
5
bc73bb29476960582e88da68ad24bf687cb2dd0e
65
py
Python
healthy_candies/load/__init__.py
striantafyllouEPFL/healthy-candies
fc7d9e05d54ba207e15d997acea44ff0bf9edb13
[ "BSD-2-Clause" ]
1
2018-11-04T21:46:29.000Z
2018-11-04T21:46:29.000Z
healthy_candies/load/__init__.py
striantafyllouEPFL/healthy-candies
fc7d9e05d54ba207e15d997acea44ff0bf9edb13
[ "BSD-2-Clause" ]
null
null
null
healthy_candies/load/__init__.py
striantafyllouEPFL/healthy-candies
fc7d9e05d54ba207e15d997acea44ff0bf9edb13
[ "BSD-2-Clause" ]
null
null
null
from .load import load_data, NUTRI_COLS, load_clean_rel_to_nutri
32.5
64
0.861538
12
65
4.166667
0.75
0
0
0
0
0
0
0
0
0
0
0
0.092308
65
1
65
65
0.847458
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
bc8c6ccfc24c9f2c6b892349f506c390ec4d676f
8,400
py
Python
isiscb/curation/authority_views/relation_views.py
crispzips/IsisCB
72f5ad47bbc2c615f995df148f5b86550835efdb
[ "MIT" ]
4
2016-01-25T20:35:33.000Z
2020-04-07T15:39:52.000Z
isiscb/curation/authority_views/relation_views.py
crispzips/IsisCB
72f5ad47bbc2c615f995df148f5b86550835efdb
[ "MIT" ]
41
2015-08-19T17:34:41.000Z
2022-03-11T23:19:01.000Z
isiscb/curation/authority_views/relation_views.py
crispzips/IsisCB
72f5ad47bbc2c615f995df148f5b86550835efdb
[ "MIT" ]
2
2020-11-25T20:18:18.000Z
2021-06-24T15:15:41.000Z
from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals from django.http import HttpResponse, HttpResponseRedirect, JsonResponse, QueryDict #, HttpResponseForbidden, Http404, , JsonResponse from django.shortcuts import get_object_or_404, render, redirect from django.urls import reverse from django.contrib.admin.views.decorators import staff_member_required, user_passes_test from rules.contrib.views import permission_required, objectgetter from isisdata.models import * from isisdata.utils import strip_punctuation, normalize from isisdata import operations from isisdata.filters import * from isisdata import tasks as data_tasks from curation import p3_port_utils from curation.forms import * from curation.contrib.views import check_rules @user_passes_test(lambda u: u.is_superuser or u.is_staff) @check_rules('can_access_view_edit', fn=objectgetter(Authority, 'authority_id')) def create_acrelation_for_authority(request, authority_id): authority = get_object_or_404(Authority, pk=authority_id) search_key = request.GET.get('search', request.POST.get('search')) current_index = request.GET.get('current', request.POST.get('current')) context = { 'curation_section': 'datasets', 'curation_subsection': 'authorities', 'instance': authority, 'search_key': search_key, 'current_index': current_index } if request.method == 'GET': initial = { 'authority': authority.id, 'name_for_display_in_citation': authority.name } type_controlled = request.GET.get('type_controlled', None) if type_controlled: initial.update({'type_controlled': type_controlled.upper()}) form = ACRelationForm(prefix='acrelation', initial=initial) elif request.method == 'POST': form = ACRelationForm(request.POST, prefix='acrelation') if form.is_valid(): form.save() target = reverse('curation:curate_authority', args=(authority.id,)) + '?tab=acrelations' if search_key and current_index: target += '&search=%s&current=%s' % (search_key, current_index) return HttpResponseRedirect(target) context.update({ 'form': form, }) template = 'curation/authority_acrelation_changeview.html' return render(request, template, context) @user_passes_test(lambda u: u.is_superuser or u.is_staff) @check_rules('can_access_view_edit', fn=objectgetter(Authority, 'authority_id')) def create_aarelation_for_authority(request, authority_id): authority = get_object_or_404(Authority, pk=authority_id) search_key = request.GET.get('search', request.POST.get('search')) current_index = request.GET.get('current', request.POST.get('current')) context = { 'curation_section': 'datasets', 'curation_subsection': 'authorities', 'instance': authority, 'search_key': search_key, 'current_index': current_index } if request.method == 'GET': initial = { 'subject': authority.id } aarelation=AARelation() aarelation.subject = authority type_controlled = request.GET.get('type_controlled', None) if type_controlled: aarelation = dict(AARelation.TYPE_CHOICES)[type_controlled] form = AARelationForm(prefix='aarelation', instance=aarelation) elif request.method == 'POST': form = AARelationForm(request.POST, prefix='aarelation') if form.is_valid(): form.save() target = reverse('curation:curate_authority', args=(authority.id,)) + '?tab=aarelations' if search_key and current_index: target += '&search=%s&current=%s' % (search_key, current_index) return HttpResponseRedirect(target) context.update({ 'form': form, }) template = 'curation/authority_aarelation_changeview.html' return render(request, template, context) @user_passes_test(lambda u: u.is_superuser or u.is_staff) @check_rules('can_access_view_edit', fn=objectgetter(Authority, 'authority_id')) def acrelation_for_authority(request, authority_id, acrelation_id): authority = get_object_or_404(Authority, pk=authority_id) acrelation = get_object_or_404(ACRelation, pk=acrelation_id) search_key = request.GET.get('search', request.POST.get('search')) current_index = request.GET.get('current', request.POST.get('current')) context = { 'curation_section': 'datasets', 'curation_subsection': 'authorities', 'instance': authority, 'acrelation': acrelation, 'search_key': search_key, 'current_index': current_index } if request.method == 'GET': form = ACRelationForm(instance=acrelation, prefix='acrelation') elif request.method == 'POST': form = ACRelationForm(request.POST, instance=acrelation, prefix='acrelation') if form.is_valid(): form.save() target = reverse('curation:curate_authority', args=(authority.id,)) + '?tab=acrelations' if search_key and current_index: target += '&search=%s&current=%s' % (search_key, current_index) return HttpResponseRedirect(target) context.update({ 'form': form, }) template = 'curation/authority_acrelation_changeview.html' return render(request, template, context) @user_passes_test(lambda u: u.is_superuser or u.is_staff) @check_rules('can_access_view_edit', fn=objectgetter(Authority, 'authority_id')) def aarelation_for_authority(request, authority_id, aarelation_id): authority = get_object_or_404(Authority, pk=authority_id) aarelation = get_object_or_404(AARelation, pk=aarelation_id) search_key = request.GET.get('search', request.POST.get('search')) current_index = request.GET.get('current', request.POST.get('current')) context = { 'curation_section': 'datasets', 'curation_subsection': 'authorities', 'instance': authority, 'aarelation': aarelation, 'search_key': search_key, 'current_index': current_index } if request.method == 'GET': form = AARelationForm(instance=aarelation, prefix='aarelation') elif request.method == 'POST': form = AARelationForm(request.POST, instance=aarelation, prefix='aarelation') if form.is_valid(): form.save() target = reverse('curation:curate_authority', args=(authority.id,)) + '?tab=aarelations' if search_key and current_index: target += '&search=%s&current=%s' % (search_key, current_index) return HttpResponseRedirect(target) context.update({ 'form': form, }) template = 'curation/authority_aarelation_changeview.html' return render(request, template, context) @user_passes_test(lambda u: u.is_superuser or u.is_staff) @check_rules('can_access_view_edit', fn=objectgetter(Authority, 'authority_id')) def delete_aarelation_for_authority(request, authority_id, aarelation_id, format=None): authority = get_object_or_404(Authority, pk=authority_id) aarelation = get_object_or_404(AARelation, pk=aarelation_id) search_key = request.GET.get('search', request.POST.get('search')) current_index = request.GET.get('current', request.POST.get('current')) context = { 'curation_section': 'datasets', 'curation_subsection': 'authorities', 'instance': authority, 'aarelation': aarelation, 'search_key': search_key, 'current_index': current_index } if request.POST.get('confirm', False) == 'true': if not aarelation.modified_on: aarelation.modified_on = datetime.datetime.now() aarelation.delete() if format == 'json': return JsonResponse({'result': True}) target = reverse('curation:curate_authority', args=(authority.id,)) + '?tab=aarelations' if search_key and current_index: target += '&search=%s&current=%s' % (search_key, current_index) return HttpResponseRedirect(target) if format == 'json': return JsonResponse({'result': False}) template = 'curation/authority_aarelation_delete.html' return render(request, template, context)
39.810427
133
0.68619
942
8,400
5.880042
0.138004
0.040621
0.028164
0.037913
0.753746
0.753746
0.723055
0.723055
0.686586
0.664921
0
0.004604
0.198452
8,400
210
134
40
0.81806
0.005714
0
0.700565
0
0
0.182014
0.057358
0
0
0
0
0
1
0.028249
false
0.033898
0.096045
0
0.19209
0.00565
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
bc92d9002e07294919b14cfdd4a1703514d8c845
53
py
Python
server/api/src/db/migrate/versions/v_2.py
mminamina/311-data
9a3e4dc6e14c7500fc3f75f583c7fc4b01108b29
[ "MIT" ]
null
null
null
server/api/src/db/migrate/versions/v_2.py
mminamina/311-data
9a3e4dc6e14c7500fc3f75f583c7fc4b01108b29
[ "MIT" ]
null
null
null
server/api/src/db/migrate/versions/v_2.py
mminamina/311-data
9a3e4dc6e14c7500fc3f75f583c7fc4b01108b29
[ "MIT" ]
null
null
null
def migrate(): print('migrating to version 2')
10.6
35
0.641509
7
53
4.857143
1
0
0
0
0
0
0
0
0
0
0
0.02439
0.226415
53
4
36
13.25
0.804878
0
0
0
0
0
0.431373
0
0
0
0
0
0
1
0.5
true
0
0
0
0.5
0.5
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
0
0
1
0
5
bcb5f8a3494a7c1dd73bdaa2595e97b680531db5
256
py
Python
Notebooks/SentinelUtilities/SentinelAnomalyLookup/__init__.py
ytognder/Azure-Sentinel
7345560f178e731d7ba5a5541fd3383bca285311
[ "MIT" ]
266
2019-10-18T00:41:39.000Z
2022-03-18T05:44:01.000Z
Notebooks/SentinelUtilities/SentinelAnomalyLookup/__init__.py
ytognder/Azure-Sentinel
7345560f178e731d7ba5a5541fd3383bca285311
[ "MIT" ]
113
2020-03-10T16:56:10.000Z
2022-03-28T21:54:26.000Z
Notebooks/SentinelUtilities/SentinelAnomalyLookup/__init__.py
ytognder/Azure-Sentinel
7345560f178e731d7ba5a5541fd3383bca285311
[ "MIT" ]
93
2020-01-07T20:28:43.000Z
2022-03-23T04:09:39.000Z
# pylint: disable-msg=C0103 """ SentinelAnomalyLookup: This package is developed for Azure Sentinel Anomaly lookup """ # __init__.py from .anomaly_lookup_view_helper import AnomalyLookupViewHelper from .anomaly_finder import AnomalyQueries, AnomalyFinder
28.444444
82
0.832031
29
256
7.068966
0.827586
0.126829
0
0
0
0
0
0
0
0
0
0.017467
0.105469
256
8
83
32
0.877729
0.472656
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
bcfa0b019701139c1bd20ee0f0d8361e7deda90e
90
py
Python
Ad-Hoc/2454.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Ad-Hoc/2454.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Ad-Hoc/2454.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
P, R = input().split() if P == '0': print('C') elif R == '0': print('B') else: print('A')
18
25
0.488889
17
90
2.588235
0.705882
0.272727
0
0
0
0
0
0
0
0
0
0.027027
0.177778
90
5
26
18
0.567568
0
0
0
0
0
0.054945
0
0
0
0
0
0
1
0
true
0
0
0
0
0.75
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
5
4c16fb50407c0d81665fb35d2265d078805475a6
6,185
py
Python
tensorflow/contrib/metrics/__init__.py
DEVESHTARASIA/tensorflow
d3edb8c60ed4fd831d62833ed22f5c23486c561c
[ "Apache-2.0" ]
384
2017-02-21T18:38:04.000Z
2022-02-22T07:30:25.000Z
tensorflow/contrib/metrics/__init__.py
ChenAugustus/tensorflow
5828e285209ff8c3d1bef2e4bd7c55ca611080d5
[ "Apache-2.0" ]
15
2017-03-01T20:18:43.000Z
2020-05-07T10:33:51.000Z
udacity-car/lib/python2.7/site-packages/tensorflow/contrib/metrics/__init__.py
808brick/CarND-Capstone
f9e536b4a9d96322d7e971073602c8969dbd9369
[ "MIT" ]
81
2017-02-21T19:31:19.000Z
2022-02-22T07:30:24.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for evaluation metrics and summary statistics. See the @{$python/contrib.metrics} guide. @@streaming_accuracy @@streaming_mean @@streaming_recall @@streaming_recall_at_thresholds @@streaming_precision @@streaming_precision_at_thresholds @@streaming_auc @@streaming_curve_points @@streaming_recall_at_k @@streaming_mean_absolute_error @@streaming_mean_iou @@streaming_mean_relative_error @@streaming_mean_squared_error @@streaming_mean_tensor @@streaming_root_mean_squared_error @@streaming_covariance @@streaming_pearson_correlation @@streaming_mean_cosine_distance @@streaming_percentage_less @@streaming_sensitivity_at_specificity @@streaming_sparse_average_precision_at_k @@streaming_sparse_average_precision_at_top_k @@streaming_sparse_precision_at_k @@streaming_sparse_precision_at_top_k @@streaming_sparse_recall_at_k @@streaming_specificity_at_sensitivity @@streaming_concat @@streaming_false_negatives @@streaming_false_negatives_at_thresholds @@streaming_false_positives @@streaming_false_positives_at_thresholds @@streaming_true_negatives @@streaming_true_negatives_at_thresholds @@streaming_true_positives @@streaming_true_positives_at_thresholds @@auc_using_histogram @@accuracy @@aggregate_metrics @@aggregate_metric_map @@confusion_matrix @@set_difference @@set_intersection @@set_size @@set_union """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,line-too-long,g-importing-member,wildcard-import from tensorflow.contrib.metrics.python.metrics import * # pylint: enable=wildcard-import from tensorflow.contrib.metrics.python.ops.confusion_matrix_ops import confusion_matrix from tensorflow.contrib.metrics.python.ops.histogram_ops import auc_using_histogram from tensorflow.contrib.metrics.python.ops.metric_ops import aggregate_metric_map from tensorflow.contrib.metrics.python.ops.metric_ops import aggregate_metrics from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_accuracy from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_auc from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_concat from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_covariance from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_curve_points from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_false_negatives from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_false_negatives_at_thresholds from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_false_positives from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_false_positives_at_thresholds from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean_absolute_error from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean_cosine_distance from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean_iou from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean_relative_error from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean_squared_error from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_mean_tensor from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_pearson_correlation from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_percentage_less from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_precision from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_precision_at_thresholds from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_recall from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_recall_at_k from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_recall_at_thresholds from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_root_mean_squared_error from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_sensitivity_at_specificity from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_sparse_average_precision_at_k from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_sparse_average_precision_at_top_k from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_sparse_precision_at_k from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_sparse_precision_at_top_k from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_sparse_recall_at_k from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_specificity_at_sensitivity from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_true_negatives from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_true_negatives_at_thresholds from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_true_positives from tensorflow.contrib.metrics.python.ops.metric_ops import streaming_true_positives_at_thresholds from tensorflow.contrib.metrics.python.ops.set_ops import set_difference from tensorflow.contrib.metrics.python.ops.set_ops import set_intersection from tensorflow.contrib.metrics.python.ops.set_ops import set_size from tensorflow.contrib.metrics.python.ops.set_ops import set_union # pylint: enable=unused-import,line-too-long from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
51.97479
104
0.864834
850
6,185
5.967059
0.165882
0.124211
0.182177
0.242902
0.662855
0.615931
0.589511
0.563289
0.563289
0.560923
0
0.001375
0.059499
6,185
118
105
52.415254
0.870552
0.344705
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.979592
0
0.979592
0.020408
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4c30fdedde14a46b90015527caf9d689634cdfab
6,504
py
Python
apps/proportions.py
harmkenn/PST_Deploy_Test
2484acf13f1f998c98fa94fad98c1f75c27d292b
[ "MIT" ]
null
null
null
apps/proportions.py
harmkenn/PST_Deploy_Test
2484acf13f1f998c98fa94fad98c1f75c27d292b
[ "MIT" ]
null
null
null
apps/proportions.py
harmkenn/PST_Deploy_Test
2484acf13f1f998c98fa94fad98c1f75c27d292b
[ "MIT" ]
null
null
null
import streamlit as st import math from scipy.stats import * import pandas as pd import numpy as np from plotnine import * def app(): # title of the app st.subheader("Proportions") st.sidebar.subheader("Proportion Settings") prop_choice = st.sidebar.radio("",["One Proportion","Two Proportions"]) if prop_choice == "One Proportion": c1,c2,c3 = st.columns(3) with c1: x = int(st.text_input("Hits",20)) n = int(st.text_input("Tries",25)) with c2: nullp = float(st.text_input("Null:",.7)) alpha = float(st.text_input("Alpha",.05)) with c3: st.markdown("Pick a test:") tail_choice = st.radio("",["Left Tail","Two Tails","Right Tail"]) one = st.columns(1) with one[0]: p_hat = x/n tsd = math.sqrt(nullp*(1-nullp)/n) cise = math.sqrt(p_hat*(1-p_hat)/n) z = (p_hat - nullp)/tsd x = np.arange(-4,4,.1) y = norm.pdf(x) ndf = pd.DataFrame({"x":x,"y":y}) normp = ggplot(ndf) + coord_fixed(ratio = 4) if tail_choice == "Left Tail": pv = norm.cdf(z) cz = norm.ppf(alpha) rcz = cz cl = 1 - 2*alpha normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (-4,z)) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (-4,cz)) if tail_choice == "Two Tails": pv = 2*(1-norm.cdf(abs(z))) cz = abs(norm.ppf(alpha/2)) rcz = "±" + str(abs(norm.ppf(alpha/2))) cl = 1 - alpha normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (-4,-1*abs(z))) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (abs(z),4)) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (-4,-1*abs(cz))) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (abs(cz),4)) if tail_choice == "Right Tail": pv = 1 - norm.cdf(z) cz = -1 * norm.ppf(alpha) rcz = cz cl = 1 - 2*alpha normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (z,4)) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (cz,4)) me = cz * cise rme = "±" + str(abs(me)) data = pd.DataFrame({"p-Hat":p_hat,"z-Score":z,"p-Value":pv,"CV":rcz,"Test SD":tsd,"C-Level":cl,"CI SE":cise,"ME":rme},index = [0]) st.write(data) normp = normp + geom_segment(aes(x = z, y = 0, xend = z, yend = norm.pdf(z)),color="red") normp = normp + geom_line(aes(x=x,y=y)) st.pyplot(ggplot.draw(normp)) lower = p_hat - abs(me) upper = p_hat + abs(me) st.write(str(100*cl) + "'%' confidence interval is (" + str(lower) +", "+str(upper)+")") if prop_choice == "Two Proportions": c1,c2,c3 = st.columns(3) with c1: x1 = int(st.text_input("Hits 1",20)) n1 = int(st.text_input("Tries 1",25)) with c2: x2 = int(st.text_input("Hits 2",30)) n2 = int(st.text_input("Tries 2",50)) with c3: alpha = float(st.text_input("Alpha",.05)) st.markdown("Pick a test:") tail_choice = st.radio("",["Left Tail","Two Tails","Right Tail"]) one = st.columns(1) with one[0]: p_hat1 = x1/n1 q_hat1 = 1 -p_hat1 p_hat2 = x2/n2 q_hat2 = 1 - p_hat2 pp_hat = (x1+x2)/(n1+n2) dp_hat = p_hat1 - p_hat2 pq_hat = 1-pp_hat tsd = math.sqrt(pp_hat*pq_hat*(1/n1+1/n2)) cise = math.sqrt(p_hat1*q_hat1/n1+p_hat2*q_hat2/n2) z = (p_hat1 - p_hat2)/tsd x = np.arange(-4,4,.1) y = norm.pdf(x) ndf = pd.DataFrame({"x":x,"y":y}) normp = ggplot(ndf) + coord_fixed(ratio = 4) if tail_choice == "Left Tail": pv = norm.cdf(z) cz = norm.ppf(alpha) rcz = cz cl = 1 - 2*alpha normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (-4,z)) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (-4,cz)) if tail_choice == "Two Tails": pv = 2*(1-norm.cdf(abs(z))) cz = abs(norm.ppf(alpha/2)) rcz = "±" + str(abs(norm.ppf(alpha/2))) cl = 1 - alpha normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (-4,-1*abs(z))) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (abs(z),4)) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (-4,-1*abs(cz))) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (abs(cz),4)) if tail_choice == "Right Tail": pv = 1 - norm.cdf(z) cz = -1 * norm.ppf(alpha) rcz = cz cl = 1 - 2*alpha normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "steelblue", xlim = (z,4)) normp = normp + stat_function(fun = norm.pdf, geom = "area",fill = "orange", xlim = (cz,4)) me = cz * cise rme = "±" + str(abs(me)) data = pd.DataFrame({"p-Hat 1":p_hat1,"p-Hat 2":p_hat2,"Pooled p-Hat":pp_hat,"Diff p-Hat":dp_hat,"z-Score":z,"p-Value":pv,"CV":rcz,"Test SD":tsd,"C-Level":cl,"CI SE":cise,"ME":rme},index = [0]) st.write(data) normp = normp + geom_segment(aes(x = z, y = 0, xend = z, yend = norm.pdf(z)),color="red") normp = normp + geom_line(aes(x=x,y=y)) st.pyplot(ggplot.draw(normp)) lower = dp_hat - abs(me) upper = dp_hat + abs(me) st.write(str(100*cl) + "'%' confidence interval is (" + str(lower) +", "+str(upper)+")")
48.177778
207
0.482934
901
6,504
3.407325
0.154273
0.045603
0.072964
0.114658
0.791857
0.7557
0.7557
0.737459
0.723127
0.723127
0
0.033034
0.348401
6,504
134
208
48.537313
0.69042
0.00246
0
0.688
0
0
0.100062
0
0
0
0
0
0
1
0.008
false
0
0.048
0
0.056
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
4c3c325909dda45d25ada2b46ed9a46e19b99dfc
4,154
py
Python
temporal_transforms.py
LijiangLong/3D-ResNets-PyTorch
89d2cba0b52d55aaa834635a81c172bc38771cd3
[ "MIT" ]
null
null
null
temporal_transforms.py
LijiangLong/3D-ResNets-PyTorch
89d2cba0b52d55aaa834635a81c172bc38771cd3
[ "MIT" ]
null
null
null
temporal_transforms.py
LijiangLong/3D-ResNets-PyTorch
89d2cba0b52d55aaa834635a81c172bc38771cd3
[ "MIT" ]
null
null
null
import random import math class LoopPadding(object): def __init__(self, size): self.size = size def __call__(self, frame_indices): out = frame_indices for index in out: if len(out) >= self.size: break out.append(index) return out class TemporalBeginCrop(object): """Temporally crop the given frame indices at a beginning. If the number of frames is less than the size, loop the indices as many times as necessary to satisfy the size. Args: size (int): Desired output size of the crop. """ def __init__(self, size): self.size = size def __call__(self, frame_indices): out = frame_indices[:self.size] for index in out: if len(out) >= self.size: break out.append(index) return out class TemporalCenterCrop(object): """Temporally crop the given frame indices at a center. If the number of frames is less than the size, loop the indices as many times as necessary to satisfy the size. Args: size (int): Desired output size of the crop. """ def __init__(self, size): self.size = size def __call__(self, frame_indices): """ Args: frame_indices (list): frame indices to be cropped. Returns: list: Cropped frame indices. """ center_index = len(frame_indices) // 2 begin_index = max(0, center_index - (self.size // 2)) end_index = min(begin_index + self.size, len(frame_indices)) out = frame_indices[begin_index:end_index] for index in out: if len(out) >= self.size: break out.append(index) return out class TemporalRandomCrop(object): """Temporally crop the given frame indices at a random location. If the number of frames is less than the size, loop the indices as many times as necessary to satisfy the size. Args: size (int): Desired output size of the crop. """ def __init__(self, size): self.size = size def __call__(self, frame_indices): """ Args: frame_indices (list): frame indices to be cropped. Returns: list: Cropped frame indices. """ rand_end = max(0, len(frame_indices) - self.size - 1) begin_index = random.randint(0, rand_end) end_index = min(begin_index + self.size, len(frame_indices)) out = frame_indices[begin_index:end_index] for index in out: if len(out) >= self.size: break out.append(index) return out class TemporalCenterCropFlexible(object): def __init__(self, begin=15, step=3, end=108): self.begin = begin self.step = step self.end = end assert (end - begin) / step + 1 == 32 def __call__(self, frame_indices): out = frame_indices[slice(self.begin, self.end+1, self.step)] return out class TemporalCenterRandomCrop(object): """Temporally crop the given frame indices at a random location. If the number of frames is less than the size, loop the indices as many times as necessary to satisfy the size. Args: size (int): Desired output size of the crop. """ def __init__(self, size): self.size = size def __call__(self, frame_indices): """ Args: frame_indices (list): frame indices to be cropped. Returns: list: Cropped frame indices. """ spacing = int((len(frame_indices) - self.size)/2) # i.e. if 120 and 90: = 30 offset = random.randint(-1*int(spacing/2) + 1, int(spacing/2) - 1) # i.e if 120 and 90, -14 to 14 begin_index = int(len(frame_indices)/2) - int(self.size/2) + offset # i.e. 120: 60 - 45 + offset (-1 to 29) end_index = begin_index + self.size out = frame_indices[begin_index:end_index] for index in out: if len(out) >= self.size: break out.append(index) return out
26.974026
115
0.590515
547
4,154
4.323583
0.155393
0.157294
0.027907
0.040592
0.771247
0.741226
0.731078
0.731078
0.715011
0.678647
0
0.017687
0.319451
4,154
154
116
26.974026
0.818889
0.314877
0
0.661972
0
0
0
0
0
0
0
0
0.014085
1
0.169014
false
0
0.028169
0
0.366197
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
d5b2899060598acf5361fb2c9db968e61435c9da
2,181
py
Python
env/lib/python3.6/site-packages/odf/meta.py
anthowen/duplify
846d01c1b21230937fdf0281b0cf8c0b08a8c24e
[ "MIT" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
env/lib/python3.6/site-packages/odf/meta.py
anthowen/duplify
846d01c1b21230937fdf0281b0cf8c0b08a8c24e
[ "MIT" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
env/lib/python3.6/site-packages/odf/meta.py
anthowen/duplify
846d01c1b21230937fdf0281b0cf8c0b08a8c24e
[ "MIT" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
# -*- coding: utf-8 -*- # Copyright (C) 2006-2007 Søren Roug, European Environment Agency # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Contributor(s): # from odf.namespaces import METANS from odf.element import Element # Autogenerated def AutoReload(**args): return Element(qname = (METANS,'auto-reload'), **args) def CreationDate(**args): return Element(qname = (METANS,'creation-date'), **args) def DateString(**args): return Element(qname = (METANS,'date-string'), **args) def DocumentStatistic(**args): return Element(qname = (METANS,'document-statistic'), **args) def EditingCycles(**args): return Element(qname = (METANS,'editing-cycles'), **args) def EditingDuration(**args): return Element(qname = (METANS,'editing-duration'), **args) def Generator(**args): return Element(qname = (METANS,'generator'), **args) def HyperlinkBehaviour(**args): return Element(qname = (METANS,'hyperlink-behaviour'), **args) def InitialCreator(**args): return Element(qname = (METANS,'initial-creator'), **args) def Keyword(**args): return Element(qname = (METANS,'keyword'), **args) def PrintDate(**args): return Element(qname = (METANS,'print-date'), **args) def PrintedBy(**args): return Element(qname = (METANS,'printed-by'), **args) def Template(**args): args.setdefault('type', 'simple') return Element(qname = (METANS,'template'), **args) def UserDefined(**args): return Element(qname = (METANS,'user-defined'), **args)
32.073529
80
0.707474
285
2,181
5.414035
0.477193
0.117952
0.163318
0.217758
0.309786
0.110175
0.04407
0
0
0
0
0.011931
0.154516
2,181
67
81
32.552239
0.824837
0.374599
0
0
0
0
0.136364
0
0
0
0
0
0
1
0.451613
true
0
0.064516
0.419355
0.967742
0.064516
0
0
0
null
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
1
1
0
0
5
d5b8367e1c83c38e170646eb1abb34d55d607542
240
py
Python
invert-binary-tree/invert-binary-tree.py
Atri10/Leet-code---Atri_Patel
49fc59b9147a44ab04a66128fbb2ef259b5f7b7c
[ "MIT" ]
1
2021-10-10T20:21:18.000Z
2021-10-10T20:21:18.000Z
invert-binary-tree/invert-binary-tree.py
Atri10/Leet-code---Atri_Patel
49fc59b9147a44ab04a66128fbb2ef259b5f7b7c
[ "MIT" ]
null
null
null
invert-binary-tree/invert-binary-tree.py
Atri10/Leet-code---Atri_Patel
49fc59b9147a44ab04a66128fbb2ef259b5f7b7c
[ "MIT" ]
null
null
null
class Solution: def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]: if root: root.left,root.right = self.invertTree(root.right),self.invertTree(root.left) return root return None
40
89
0.641667
28
240
5.5
0.464286
0.207792
0.168831
0.298701
0.324675
0
0
0
0
0
0
0
0.25
240
6
90
40
0.855556
0
0
0
0
0
0
0
0
0
0
0
0
1
0.166667
false
0
0
0
0.666667
0
1
0
0
null
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
5
d5c051b72ce68a91896ab21b2fd4b6e93e7e9a10
174
py
Python
SG_GetDataForClassifier.py
shubha1593/MovieReviewAnalysis
c485eea0c8b35e554027cce7a431212b406e672c
[ "MIT" ]
7
2015-04-01T12:41:55.000Z
2019-08-01T18:13:56.000Z
SG_GetDataForClassifier.py
shubha1593/MovieReviewAnalysis
c485eea0c8b35e554027cce7a431212b406e672c
[ "MIT" ]
null
null
null
SG_GetDataForClassifier.py
shubha1593/MovieReviewAnalysis
c485eea0c8b35e554027cce7a431212b406e672c
[ "MIT" ]
null
null
null
from SG_GetFeatureMatrix import * from SG_VectorY import * featureMatrix = featureMatrixFromReviews() Y = getYVector() def getDataForClassifier() : return featureMatrix, Y
21.75
42
0.804598
17
174
8.117647
0.705882
0.086957
0
0
0
0
0
0
0
0
0
0
0.126437
174
8
43
21.75
0.907895
0
0
0
0
0
0
0
0
0
0
0
0
1
0.166667
false
0
0.333333
0.166667
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
1
1
0
0
5
d5d747b80a8ea5e6c6c092c35a44d7f1c0635eb8
117
py
Python
music_api/apps/music_app/admin.py
fejiroofficial/Simple_music
2dd9dcf8e5c7374e29dcf96987c053eebf1cba2a
[ "MIT" ]
null
null
null
music_api/apps/music_app/admin.py
fejiroofficial/Simple_music
2dd9dcf8e5c7374e29dcf96987c053eebf1cba2a
[ "MIT" ]
8
2019-12-04T23:40:12.000Z
2022-02-10T07:58:28.000Z
music_api/apps/music_app/admin.py
fejiroofficial/simple_music
2dd9dcf8e5c7374e29dcf96987c053eebf1cba2a
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Songs admin.site.register(Songs) # Register your models here.
16.714286
32
0.794872
17
117
5.470588
0.647059
0
0
0
0
0
0
0
0
0
0
0
0.136752
117
6
33
19.5
0.920792
0.222222
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
d5ecb68fc8ba51b00e1a946759c8f1a77d41211f
1,635
py
Python
RunIt/airt/poker_cards.py
antx-code/funcode
a8a9b99274e169562771b488a3a9551277ef4b99
[ "MIT" ]
3
2021-09-27T08:07:07.000Z
2022-03-11T04:46:30.000Z
RunIt/airt/poker_cards.py
antx-code/funcode
a8a9b99274e169562771b488a3a9551277ef4b99
[ "MIT" ]
null
null
null
RunIt/airt/poker_cards.py
antx-code/funcode
a8a9b99274e169562771b488a3a9551277ef4b99
[ "MIT" ]
null
null
null
# Square 方片 => sq => RGB蓝色(Blue) # Plum 梅花 => pl => RGB绿色(Green) # Spade 黑桃 => sp => RGB黑色(Black) # Heart 红桃 => he => RGB红色(Red) init_poker = { 'local': { 'head': [-1, -1, -1], 'mid': [-1, -1, -1, -1, -1], 'tail': [-1, -1, -1, -1, -1], 'drop': [-1, -1, -1, -1], 'hand': [-1, -1, -1] }, 'player1': { 'head': [-1, -1, -1], 'mid': [-1, -1, -1, -1, -1], 'tail': [-1, -1, -1, -1, -1], 'drop': [-1, -1, -1, -1], 'hand': [-1, -1, -1] }, 'player2': { 'head': [-1, -1, -1], 'mid': [-1, -1, -1, -1, -1], 'tail': [-1, -1, -1, -1, -1], 'drop': [-1, -1, -1, -1], 'hand': [-1, -1, -1] } } # Square Blue = { '2': 0, '3': 1, '4': 2, '5': 3, '6': 4, '7': 5, '8': 6, '9': 7, '10': 8, 'J': 9, 'Q': 10, 'K': 11, 'A': 12 } # Plum Green = { '2': 13, '3': 14, '4': 15, '5': 16, '6': 17, '7': 18, '8': 19, '9': 20, '10': 21, 'J': 22, 'Q': 23, 'K': 24, 'A': 25 } # Heart Red = { '2': 26, '3': 27, '4': 28, '5': 29, '6': 30, '7': 31, '8': 32, '9': 33, '10': 34, 'J': 35, 'Q': 36, 'K': 37, 'A': 38 } # Spade Black = { '2': 39, '3': 40, '4': 41, '5': 42, '6': 43, '7': 44, '8': 45, '9': 46, '10': 47, 'J': 48, 'Q': 49, 'K': 50, 'A': 51 } POKER_SCOPE = [ '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A' ]
14.469027
40
0.263609
227
1,635
1.889868
0.38326
0.20979
0.20979
0.13986
0.272727
0.272727
0.272727
0.272727
0.272727
0.272727
0
0.22103
0.429969
1,635
112
41
14.598214
0.23927
0.107645
0
0.153061
0
0
0.10069
0
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
1
null
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
d5fc2fcc2b0439d566be57074eaeae0f3e82e072
129
py
Python
deepa2/preptrain/__init__.py
debatelab/deepa2
1a9e8c357d7e3924808c703ec9f4a6611a4b5f93
[ "Apache-2.0" ]
null
null
null
deepa2/preptrain/__init__.py
debatelab/deepa2
1a9e8c357d7e3924808c703ec9f4a6611a4b5f93
[ "Apache-2.0" ]
null
null
null
deepa2/preptrain/__init__.py
debatelab/deepa2
1a9e8c357d7e3924808c703ec9f4a6611a4b5f93
[ "Apache-2.0" ]
null
null
null
"""Preprocessing DeepA2 datasets for LM training""" # flake8: noqa from deepa2.preptrain.t2tpreprocessor import T2TPreprocessor
25.8
60
0.813953
14
129
7.5
0.857143
0
0
0
0
0
0
0
0
0
0
0.043478
0.108527
129
4
61
32.25
0.869565
0.457364
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
910239e4d64bcd7a23fd58a2e98cbfc09b91c703
65
py
Python
IsraeliQueue/__init__.py
YonLiud/Israeli-Queue
53e14e68701c06efdd23ba6584a2e8a561e60cd9
[ "MIT" ]
2
2021-06-20T23:47:58.000Z
2021-06-28T19:15:41.000Z
IsraeliQueue/__init__.py
YonLiud/Israeli-Queue
53e14e68701c06efdd23ba6584a2e8a561e60cd9
[ "MIT" ]
null
null
null
IsraeliQueue/__init__.py
YonLiud/Israeli-Queue
53e14e68701c06efdd23ba6584a2e8a561e60cd9
[ "MIT" ]
null
null
null
from .IsraeliQueue import IsraeliQueue, Item, IsraeliQueueByType
32.5
64
0.861538
6
65
9.333333
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.092308
65
1
65
65
0.949153
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
91095212fe94005bb0badaf0b1144da0c2a0e7f0
300
py
Python
freehackquest_libclient_py/__init__.py
freehackquest/libfhqcli-py
382242943047b63861aad0f41bb89c82e755963c
[ "Apache-2.0" ]
null
null
null
freehackquest_libclient_py/__init__.py
freehackquest/libfhqcli-py
382242943047b63861aad0f41bb89c82e755963c
[ "Apache-2.0" ]
null
null
null
freehackquest_libclient_py/__init__.py
freehackquest/libfhqcli-py
382242943047b63861aad0f41bb89c82e755963c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020-2021 FreeHackQuest Team <freehackquest@gmail.com> """This file was automatically generated by fhq-server Version: v0.2.47 Date: 2022-01-01 07:15:35 """ from freehackquest_libclient_py.freehackquest_client import FreeHackQuestClient
33.333333
79
0.77
43
300
5.302326
0.906977
0
0
0
0
0
0
0
0
0
0
0.104089
0.103333
300
8
80
37.5
0.743494
0.69
0
0
1
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
91439c7735cd8dec720dbcbb904a5ff89db7c69f
17,382
py
Python
PySS/fem.py
manpan-1/PySS
1e4b13de3b2aed13ecf9818f9084a2fedb295cf1
[ "MIT" ]
2
2018-12-03T13:53:00.000Z
2019-10-20T14:30:57.000Z
PySS/fem.py
manpan-1/PySS
1e4b13de3b2aed13ecf9818f9084a2fedb295cf1
[ "MIT" ]
null
null
null
PySS/fem.py
manpan-1/PySS
1e4b13de3b2aed13ecf9818f9084a2fedb295cf1
[ "MIT" ]
1
2018-03-23T19:58:21.000Z
2018-03-23T19:58:21.000Z
import matplotlib.pyplot as plt import numpy as np import pickle # import csv # from collections import namedtuple # from mpl_toolkits.mplot3d import Axes3D # import matplotlib.animation as animation # import matplotlib.colors as mc class FEModel: def __init__(self, name=None, hist_data=None): self.name = name self.hist_outs = hist_data def tuple2dict(self, data): """ Used to convert the load-displacement data exported from models to a dictionary """ ld_data = [] for specimen in data: sp_dict = dict() load = [] disp = [] for action in specimen[0]: load.append(action[1]) for action in specimen[1]: disp.append(action[1]) sp_dict["Load"] = np.array(load) sp_dict["Disp"] = -1 * np.array(disp) ld_data.append(sp_dict) def plot_history(self, x_axis, y_axis): """ XXXXXXXXXXXXXXXXXXXXXXXXXX """ plt.figure() plt.plot(self.hist_outs[x_axis], self.hist_outs[y_axis]) @classmethod def from_hist_pkl(cls, filename): """ Creates an object and imports history output data. """ with open(filename, "rb") as fh: history_data = pickle.load(fh) return cls(name=filename, hist_data=history_data) # # class ParametricDB: # def __init__(self, dimensions, responses): # self.responses = responses # self.dimensions = dimensions # # @classmethod # def from_file(cls, filename): # """ # Create from file. # # The file should be comma separated, first row titles, subsequent rows only numbers. # # Parameters # ---------- # filename : str # Relative path/filename. # # Return # ------ # ParametricDB # # """ # # with open(filename, 'rU') as infile: # # reader = csv.reader(infile) # # n_dim = int(next(reader)[0].split()[0]) # # db = {c[0]: c[1:] for c in zip(*reader)} # # with open(filename, 'rU') as infile: # reader = csv.reader(infile, delimiter=";") # n_dim = int(next(reader)[0].split()[0]) # db = [c for c in zip(*reader)] # # all_responses = {i[0]: i[1:] for i in db[n_dim:]} # # dim_ticks = np.array([i[1:] for i in db[:n_dim]]).T # dim_lengths = [len(set(dim_ticks[:, i])) for i in range(n_dim)] # dim_names = [db[i][0] for i in range(n_dim)] # # # with open(filename, 'r') as infile: # # all_lines = [[c.split(sep=":")[0]] + c.split(sep=":")[1].split(sep=",") for c in infile] # # db = {c[0]: c[1:] for c in zip(*all_lines)} # # # for key in db.keys(): # # if len(key.split(",")) > 1: # # n_dim = len(key.split(",")) # # dim_str = key # # dim_ticks = np.array([c.split(sep=",") for c in db[dim_str]]) # # dim_lengths = [len(set(dim_ticks[:, i])) for i in range(n_dim)] # # dim_names = dim_str.split(sep=",") # full_list = {i[0]: i[1:][0] for i in zip(dim_names, dim_ticks.T)} # # # del db[dim_str] # # #df = pd.DataFrame(full_dict) # # Address = namedtuple("map", " ".join(dim_names)) # args = [tuple(sorted(set(dim_ticks[:, i]))) for i, j in enumerate(dim_names)] # addressbook = Address(*args) # # mtx = {i: np.empty(dim_lengths) for i in all_responses.keys()} # for response in all_responses.keys(): # for i, response_value in enumerate(all_responses[response]): # current_idx = tuple(addressbook[idx].index(full_list[name][i]) for idx, name in enumerate(dim_names)) # mtx[response][current_idx] = response_value # mtx[response].flags.writeable = False # # return cls(addressbook, mtx) # # def get_slice(self, slice_at, response): # """ # Get a slice of the database. # # Parameters # ---------- # slice_at : dict of int # A dictionary of the keys to be sliced at the assigned values. # response : str # The name of the requested response to be sliced. # # """ # # idx_arr = [0]*len(self.dimensions) # # for key in self.dimensions._fields: # if key not in slice_at.keys(): # idx_arr[self.get_idx(key)] = slice(None, None) # for name, value in zip(slice_at.keys(), slice_at.values()): # idx_arr[self.get_idx(name)] = value # # return self.responses[response][idx_arr] # # def get_idx(self, attrname): # """ # Get the index number of a parameter (dimension) in the database. # # Parameters # ---------- # attrname : str # # """ # return(self.dimensions.index(self.dimensions.__getattribute__(attrname))) # # def contour_2d(self, slice_at, response, transpose=False, fig=None, sbplt=None): # """ # Contour plot. # :param slice_at: # :return: # """ # plt.rc('text', usetex=True) # if fig is None: # fig = plt.figure() # if sbplt is None: # ax = fig.add_subplot(111) # else: # ax = fig.add_subplot(sbplt) # else: # if sbplt is None: # ax = fig.add_subplot(111) # else: # ax = fig.add_subplot(sbplt) # # axes = [key for key in self.dimensions._fields if key not in slice_at.keys()] # # if transpose: # X, Y = np.meshgrid(self.dimensions[self.get_idx(axes[1])], self.dimensions[self.get_idx(axes[0])]) # Z = self.get_slice(slice_at, response).T # x_label, y_label = axes[1], axes[0] # else: # X, Y = np.meshgrid(self.dimensions[self.get_idx(axes[0])], self.dimensions[self.get_idx(axes[1])]) # Z = self.get_slice(slice_at, response) # x_label, y_label = axes[0], axes[1] # # ttl_values = [self.dimensions[self.get_idx(i)][slice_at[i]] for i in slice_at.keys()] # # # levels = np.arange(0, 2., 0.025) # # sbplt = ax.contour(X.astype(np.float), Y.astype(np.float), Z.T, vmin=0.4, vmax=1., levels=levels, cmap=plt.cm.inferno) # sbplt = ax.contour(X.astype(np.float), Y.astype(np.float), Z.T, cmap=plt.cm.gray_r) # sbplt2 = ax.contourf(X.astype(np.float), Y.astype(np.float), Z.T, cmap=plt.cm.inferno) # plt.clabel(sbplt, inline=1, fontsize=10) # ttl = [i for i in zip(slice_at.keys(), ttl_values)] # ttl = ", ".join(["=".join(i) for i in ttl]) # ax.set_title("$" + response + "$" + " for : " + "$" + ttl + "$") # ax.set_xlabel("$"+x_label+"$") # ax.set_ylabel("$"+y_label+"$") # # return fig # # def surf_3d(self, slice_at, response, transpose=False, fig=None, sbplt=None): # """ # Surface plot. # :param slice_at: # :return: # """ # #Convenient window dimensions # # one subplot: # # 2 side by side: Bbox(x0=0.0, y0=0.0, x1=6.79, y1=2.57) # # azim elev = -160 30 # # 3 subplots side by side # # 4 subplots: Bbox(x0=0.0, y0=0.0, x1=6.43, y1=5.14) # #azim elev -160 30 # plt.rc('text', usetex=True) # if fig is None: # fig = plt.figure() # if sbplt is None: # ax = fig.add_subplot(111, projection='3d') # else: # ax = fig.add_subplot(sbplt, projection='3d') # else: # if sbplt is None: # ax = fig.add_subplot(111, projection='3d') # else: # ax = fig.add_subplot(sbplt, projection='3d') # # # axes = [key for key in self.dimensions._fields if key not in slice_at.keys()] # # if transpose: # X, Y = np.meshgrid(self.dimensions[self.get_idx(axes[1])], self.dimensions[self.get_idx(axes[0])]) # Z = self.get_slice(slice_at, response).T # x_label, y_label = axes[1], axes[0] # else: # X, Y = np.meshgrid(self.dimensions[self.get_idx(axes[0])], self.dimensions[self.get_idx(axes[1])]) # Z = self.get_slice(slice_at, response) # x_label, y_label = axes[0], axes[1] # # ttl_values = [self.dimensions[self.get_idx(i)][slice_at[i]] for i in slice_at.keys()] # # sbplt = ax.plot_surface(X.astype(np.float), Y.astype(np.float), Z.T, cmap=plt.cm.inferno) # # plt.clabel(sbplt, inline=1, fontsize=10) # ttl = [i for i in zip(slice_at.keys(), ttl_values)] # ttl = ", ".join(["=".join(i) for i in ttl]) # ax.set_title("$" + response + "$" + " for : " + "$" + ttl + "$") # ax.set_xlabel("$"+x_label+"$") # ax.set_ylabel("$"+y_label+"$") # # return fig # # def match_viewports(fig=None): # if fig is None: # fig = plt.gcf() # fig.axes[1].view_init(azim=fig.axes[0].azim, elev=fig.axes[0].elev) def main(): lambda01 = ParametricDB.from_file("data/fem/fem-results_lambda01.dat") fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcA, f_yield: 355 MPa, lambda_flex: 0.1") lambda01.contour_2d({"plate_imp": 0, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[0, 0]) lambda01.contour_2d({"plate_imp": 1, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[0, 1]) lambda01.contour_2d({"plate_imp": 2, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[0, 2]) lambda01.contour_2d({"plate_imp": 3, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[1, 0]) lambda01.contour_2d({"plate_imp": 4, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[1, 1]) lambda01.contour_2d({"plate_imp": 5, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcB, f_yield: 355 MPa, lambda_flex: 0.1") lambda01.contour_2d({"plate_imp": 0, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[0, 0]) lambda01.contour_2d({"plate_imp": 1, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[0, 1]) lambda01.contour_2d({"plate_imp": 2, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[0, 2]) lambda01.contour_2d({"plate_imp": 3, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[1, 0]) lambda01.contour_2d({"plate_imp": 4, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[1, 1]) lambda01.contour_2d({"plate_imp": 5, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcC, f_yield: 355 MPa, lambda_flex: 0.1") lambda01.contour_2d({"plate_imp": 0, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[0, 0]) lambda01.contour_2d({"plate_imp": 1, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[0, 1]) lambda01.contour_2d({"plate_imp": 2, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[0, 2]) lambda01.contour_2d({"plate_imp": 3, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[1, 0]) lambda01.contour_2d({"plate_imp": 4, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[1, 1]) lambda01.contour_2d({"plate_imp": 5, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcA, f_yield: 700 MPa, lambda_flex: 0.1") lambda01.contour_2d({"plate_imp": 0, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[0, 0]) lambda01.contour_2d({"plate_imp": 1, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[0, 1]) lambda01.contour_2d({"plate_imp": 2, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[0, 2]) lambda01.contour_2d({"plate_imp": 3, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[1, 0]) lambda01.contour_2d({"plate_imp": 4, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[1, 1]) lambda01.contour_2d({"plate_imp": 5, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcB, f_yield: 700 MPa, lambda_flex: 0.1") lambda01.contour_2d({"plate_imp": 0, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[0, 0]) lambda01.contour_2d({"plate_imp": 1, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[0, 1]) lambda01.contour_2d({"plate_imp": 2, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[0, 2]) lambda01.contour_2d({"plate_imp": 3, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[1, 0]) lambda01.contour_2d({"plate_imp": 4, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[1, 1]) lambda01.contour_2d({"plate_imp": 5, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcC, f_yield: 700 MPa, lambda_flex: 0.1") lambda01.contour_2d({"plate_imp": 0, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[0, 0]) lambda01.contour_2d({"plate_imp": 1, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[0, 1]) lambda01.contour_2d({"plate_imp": 2, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[0, 2]) lambda01.contour_2d({"plate_imp": 3, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[1, 0]) lambda01.contour_2d({"plate_imp": 4, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[1, 1]) lambda01.contour_2d({"plate_imp": 5, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[1, 2]) lambda02 = ParametricDB.from_file("data/fem/fem-results-lambda02.dat") fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcA, f_yield: 355 MPa, lambda_flex: 0.2") lambda02.contour_2d({"plate_imp": 0, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[0, 0]) lambda02.contour_2d({"plate_imp": 1, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[0, 1]) lambda02.contour_2d({"plate_imp": 2, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[0, 2]) lambda02.contour_2d({"plate_imp": 3, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[1, 0]) lambda02.contour_2d({"plate_imp": 4, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[1, 1]) lambda02.contour_2d({"plate_imp": 5, "fab_class": 0, "f_yield": 0}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcB, f_yield: 355 MPa, lambda_flex: 0.2") lambda02.contour_2d({"plate_imp": 0, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[0, 0]) lambda02.contour_2d({"plate_imp": 1, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[0, 1]) lambda02.contour_2d({"plate_imp": 2, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[0, 2]) lambda02.contour_2d({"plate_imp": 3, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[1, 0]) lambda02.contour_2d({"plate_imp": 4, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[1, 1]) lambda02.contour_2d({"plate_imp": 5, "fab_class": 1, "f_yield": 0}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcC, f_yield: 355 MPa, lambda_flex: 0.2") lambda02.contour_2d({"plate_imp": 0, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[0, 0]) lambda02.contour_2d({"plate_imp": 1, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[0, 1]) lambda02.contour_2d({"plate_imp": 2, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[0, 2]) lambda02.contour_2d({"plate_imp": 3, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[1, 0]) lambda02.contour_2d({"plate_imp": 4, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[1, 1]) lambda02.contour_2d({"plate_imp": 5, "fab_class": 2, "f_yield": 0}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcA, f_yield: 700 MPa, lambda_flex: 0.2") lambda02.contour_2d({"plate_imp": 0, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[0, 0]) lambda02.contour_2d({"plate_imp": 1, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[0, 1]) lambda02.contour_2d({"plate_imp": 2, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[0, 2]) lambda02.contour_2d({"plate_imp": 3, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[1, 0]) lambda02.contour_2d({"plate_imp": 4, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[1, 1]) lambda02.contour_2d({"plate_imp": 5, "fab_class": 0, "f_yield": 1}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcB, f_yield: 700 MPa, lambda_flex: 0.2") lambda02.contour_2d({"plate_imp": 0, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[0, 0]) lambda02.contour_2d({"plate_imp": 1, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[0, 1]) lambda02.contour_2d({"plate_imp": 2, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[0, 2]) lambda02.contour_2d({"plate_imp": 3, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[1, 0]) lambda02.contour_2d({"plate_imp": 4, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[1, 1]) lambda02.contour_2d({"plate_imp": 5, "fab_class": 1, "f_yield": 1}, "lpf", ax=ax[1, 2]) fig, ax = plt.subplots(nrows=2, ncols=3) fig.suptitle("fab_class: fcC, f_yield: 700 MPa, lambda_flex: 0.2") lambda02.contour_2d({"plate_imp": 0, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[0, 0]) lambda02.contour_2d({"plate_imp": 1, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[0, 1]) lambda02.contour_2d({"plate_imp": 2, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[0, 2]) lambda02.contour_2d({"plate_imp": 3, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[1, 0]) lambda02.contour_2d({"plate_imp": 4, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[1, 1]) lambda02.contour_2d({"plate_imp": 5, "fab_class": 2, "f_yield": 1}, "lpf", ax=ax[1, 2]) return
47.884298
130
0.56921
2,713
17,382
3.468485
0.095466
0.071413
0.10712
0.130074
0.738363
0.718916
0.713815
0.705951
0.702976
0.696918
0
0.059203
0.233287
17,382
362
131
48.016575
0.646882
0.441721
0
0.09375
0
0
0.286353
0.007021
0
0
0
0
0
1
0.039063
false
0
0.023438
0
0.085938
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
e6ee19c46029883010bf024e3e8dd551854a83e8
80
py
Python
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
f03969c05427bc1804d05c42823a28725c7e38a0
[ "Apache-2.0" ]
null
null
null
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
f03969c05427bc1804d05c42823a28725c7e38a0
[ "Apache-2.0" ]
null
null
null
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
f03969c05427bc1804d05c42823a28725c7e38a0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from .LineApi import LINE from .lib.Gen.ttypes import *
20
29
0.6625
12
80
4.416667
0.833333
0
0
0
0
0
0
0
0
0
0
0.014925
0.1625
80
3
30
26.666667
0.776119
0.2625
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
e6f6e592f45ce51ed72972736b1981a35d6ad662
81
py
Python
pynn/__init__.py
jkae/knn-exercise
ae569e3f6a0e23669369d99e032270e72f8fbb66
[ "MIT" ]
null
null
null
pynn/__init__.py
jkae/knn-exercise
ae569e3f6a0e23669369d99e032270e72f8fbb66
[ "MIT" ]
null
null
null
pynn/__init__.py
jkae/knn-exercise
ae569e3f6a0e23669369d99e032270e72f8fbb66
[ "MIT" ]
null
null
null
from .nearest_neighbor_index import NearestNeighborIndex from .kd_tree import *
20.25
56
0.851852
10
81
6.6
0.8
0
0
0
0
0
0
0
0
0
0
0
0.111111
81
3
57
27
0.916667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
fc0c40028b9c4945addfec469dd5871c8f82e05b
52
py
Python
gemucator/__init__.py
philipwfowler/genucator
d43a79afe1aa81ca24d7ab4370ed230e08aa89bf
[ "MIT" ]
null
null
null
gemucator/__init__.py
philipwfowler/genucator
d43a79afe1aa81ca24d7ab4370ed230e08aa89bf
[ "MIT" ]
null
null
null
gemucator/__init__.py
philipwfowler/genucator
d43a79afe1aa81ca24d7ab4370ed230e08aa89bf
[ "MIT" ]
null
null
null
#! /usr/bin/env python from .core import gemucator
13
27
0.730769
8
52
4.75
1
0
0
0
0
0
0
0
0
0
0
0
0.153846
52
3
28
17.333333
0.863636
0.403846
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
fc1d95b3a3f568e9cf0561a8f283914e5b1db140
1,815
py
Python
skopt/tests/test_transformers.py
sqbl/scikit-optimize
c1866d5a9ad67efe93ac99736bfc2dc659b561d4
[ "BSD-3-Clause" ]
null
null
null
skopt/tests/test_transformers.py
sqbl/scikit-optimize
c1866d5a9ad67efe93ac99736bfc2dc659b561d4
[ "BSD-3-Clause" ]
null
null
null
skopt/tests/test_transformers.py
sqbl/scikit-optimize
c1866d5a9ad67efe93ac99736bfc2dc659b561d4
[ "BSD-3-Clause" ]
null
null
null
import pytest import numbers import numpy as np from numpy.testing import assert_raises from numpy.testing import assert_array_equal from numpy.testing import assert_equal from numpy.testing import assert_raises_regex from skopt.space import LogN, Normalize @pytest.mark.fast_test def test_logn2_integer(): transformer = LogN(2) for X in range(2, 31): X_orig = transformer.inverse_transform(transformer.transform(X)) assert_array_equal(int(np.round(X_orig)), X) @pytest.mark.fast_test def test_logn10_integer(): transformer = LogN(2) for X in range(2, 31): X_orig = transformer.inverse_transform(transformer.transform(X)) assert_array_equal(int(np.round(X_orig)), X) @pytest.mark.fast_test def test_normalize_integer(): transformer = Normalize(1, 20, is_int=True) assert transformer.transform(19.8) == 1.0 assert transformer.transform(20.2) == 1.0 assert transformer.transform(1.2) == 0.0 assert transformer.transform(0.9) == 0.0 assert_raises(ValueError, transformer.transform, 20.6) assert_raises(ValueError, transformer.transform, 0.4) assert transformer.inverse_transform(0.99) == 20 assert transformer.inverse_transform(0.01) == 1 assert_raises(ValueError, transformer.inverse_transform, 1. + 1e-8) assert_raises(ValueError, transformer.transform, 0. - 1e-8) @pytest.mark.fast_test def test_normalize(): transformer = Normalize(1, 20, is_int=False) assert transformer.transform(20.) == 1.0 assert transformer.transform(1.) == 0.0 assert_raises(ValueError, transformer.transform, 20. + 1e-7) assert_raises(ValueError, transformer.transform, 1.0 - 1e-7) assert_raises(ValueError, transformer.inverse_transform, 1. + 1e-8) assert_raises(ValueError, transformer.transform, 0. - 1e-8)
34.245283
72
0.738292
256
1,815
5.074219
0.203125
0.21555
0.135489
0.203233
0.836798
0.734411
0.482679
0.449577
0.378753
0.378753
0
0.049351
0.151515
1,815
52
73
34.903846
0.794156
0
0
0.380952
0
0
0
0
0
0
0
0
0.52381
1
0.095238
false
0
0.190476
0
0.285714
0
0
0
0
null
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
5
fc3539d71d659a16209a54fcd5f9758f5e36c76b
3,993
py
Python
tests/test_server.py
m-bo-one/ethereumd-proxy
1d1eb3905dac4b28a8e23c283214859a13f6e020
[ "MIT" ]
21
2017-07-24T15:45:03.000Z
2019-09-21T16:18:48.000Z
tests/test_server.py
m-bo-one/ethereumd-proxy
1d1eb3905dac4b28a8e23c283214859a13f6e020
[ "MIT" ]
11
2017-07-24T20:14:16.000Z
2019-02-10T22:52:32.000Z
tests/test_server.py
DeV1doR/ethereumd-proxy
1d1eb3905dac4b28a8e23c283214859a13f6e020
[ "MIT" ]
8
2018-02-17T13:33:15.000Z
2020-08-16T05:21:34.000Z
from collections import namedtuple import json from asynctest.mock import patch import pytest from ethereumd.server import RPCServer from ethereumd.proxy import EthereumProxy from aioethereum.errors import BadResponseError from .base import BaseTestRunner Request = namedtuple('Request', ['json']) class TestServer(BaseTestRunner): run_with_node = True async def init_server(self, loop): server = RPCServer() with patch('ethereumd.poller.Poller.poll'): await server.before_server_start()(None, loop) return server @pytest.mark.asyncio async def test_server_handler_index_success_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error'] is None assert isinstance(parsed['result'], int) @pytest.mark.asyncio async def test_server_handler_index_invalid_rpc_data(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'id': 'test', } request = Request(json=data) response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -32602 assert parsed['error']['message'] == 'Invalid rpc 2.0 structure' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_attr_error_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise AttributeError('bla bla method not found') with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -32601 assert parsed['error']['message'] == 'Method not found' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_type_error_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise TypeError('test') with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -1 assert parsed['error']['message'] == 'test' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_bad_response_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise BadResponseError('test', code=-99999999) with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -99999999 assert parsed['error']['message'] == 'test' assert parsed['result'] is None
33.554622
76
0.596043
421
3,993
5.489311
0.2019
0.067503
0.077888
0.047598
0.707486
0.707486
0.707486
0.707486
0.707486
0.666811
0
0.013708
0.287503
3,993
118
77
33.838983
0.798594
0
0
0.633663
0
0
0.119459
0.007012
0
0
0
0
0.138614
1
0.029703
false
0
0.079208
0
0.138614
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
fc4539e7bc135f9ebeba5ee7c487446b450f5f15
35
py
Python
Python/Tests/TestData/ProjectHomeProjects/Subfolder/ProgramB.py
techkey/PTVS
8355e67eedd8e915ca49bd38a2f36172696fd903
[ "Apache-2.0" ]
404
2019-05-07T02:21:57.000Z
2022-03-31T17:03:04.000Z
Python/Tests/TestData/ProjectHomeProjects/Subfolder/ProgramB.py
techkey/PTVS
8355e67eedd8e915ca49bd38a2f36172696fd903
[ "Apache-2.0" ]
1,672
2019-05-06T21:09:38.000Z
2022-03-31T23:16:04.000Z
Python/Tests/TestData/ProjectHomeProjects/Subfolder/ProgramB.py
techkey/PTVS
8355e67eedd8e915ca49bd38a2f36172696fd903
[ "Apache-2.0" ]
186
2019-05-13T03:17:37.000Z
2022-03-31T16:24:05.000Z
# ProgramB.py print('Hello World')
11.666667
20
0.714286
5
35
5
1
0
0
0
0
0
0
0
0
0
0
0
0.114286
35
2
21
17.5
0.806452
0.314286
0
0
0
0
0.5
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
5
fc69e4e9cacf2317d6b062809fbe0cb9a22ea2b1
72
py
Python
hydrobox/discharge/__init__.py
VForWaTer/hydrobox
ae7d10bf5aa48bf7daf3d1094e6bb66f0a7ce96b
[ "MIT" ]
4
2020-10-08T15:31:36.000Z
2021-06-25T00:46:40.000Z
hydrobox/discharge/__init__.py
joergmeyer-kit/hydrobox
af75a5ba87147e00656435c170535c69fc3298a8
[ "MIT" ]
5
2020-05-12T08:45:18.000Z
2021-05-20T07:18:47.000Z
hydrobox/discharge/__init__.py
joergmeyer-kit/hydrobox
af75a5ba87147e00656435c170535c69fc3298a8
[ "MIT" ]
3
2020-07-27T07:16:14.000Z
2021-04-28T21:57:48.000Z
from .catchment import regime, flow_duration_curve from . import indices
36
50
0.847222
10
72
5.9
0.8
0
0
0
0
0
0
0
0
0
0
0
0.111111
72
2
51
36
0.921875
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
fc7738cdaacc95969a1834885a266a49c73d4c6b
12,361
py
Python
coffeine/pipelines.py
dengemann/meegpowreg
e9cc8f2372f8b8ef4b372bfea113ed0b9646cb39
[ "MIT" ]
6
2021-07-19T12:17:59.000Z
2021-08-09T15:50:18.000Z
coffeine/pipelines.py
dengemann/meegpowreg
e9cc8f2372f8b8ef4b372bfea113ed0b9646cb39
[ "MIT" ]
23
2021-04-16T21:41:36.000Z
2021-07-13T10:08:47.000Z
coffeine/pipelines.py
dengemann/meegpowreg
e9cc8f2372f8b8ef4b372bfea113ed0b9646cb39
[ "MIT" ]
5
2021-04-15T15:28:51.000Z
2021-06-28T21:17:11.000Z
import numpy as np from coffeine.covariance_transformers import ( Diag, LogDiag, ExpandFeatures, Riemann, RiemannSnp, NaiveVec) from coffeine.spatial_filters import ( ProjIdentitySpace, ProjCommonSpace, ProjLWSpace, ProjRandomSpace, ProjSPoCSpace) from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import RidgeCV, LogisticRegression def make_filter_bank_transformer(names, method='riemann', projection_params=None, vectorization_params=None, categorical_interaction=None): """Generate pipeline for filterbank models. Prepare filter bank models as used in [1]_. These models take as input sensor-space covariance matrices computed from M/EEG signals in different frequency bands. Then transformations are applied to improve the applicability of linear regression techniques by reducing the impact of field spread. In terms of implementation, this involves 1) projection (e.g. spatial filters) and 2) vectorization (e.g. taking the log on the diagonal). .. note:: The resulting model expects as inputs data frames in which different covarances (e.g. for different frequencies) are stored inside columns indexed by ``names``. Other columns will be passed through by the underlying column transformers. The pipeline also supports fitting categorical interaction effects after projection and vectorization steps are performed. .. note:: All essential methods from [1]_ are implemented here. In practice, we recommend comparing `riemann', `spoc' and `diag' as a baseline. Parameters ---------- names : list of str The column names of the data frame corresponding to different covariances. method : str The method used for extracting features from covariances. Defaults to ``'riemann'``. Can be ``'riemann'``, ``'lw_riemann'``, ``'diag'``, ``'log_diag'``, ``'random'``, ``'naive'``, ``'spoc'``, ``'riemann_wasserstein'``. projection_params : dict | None The parameters for the projection step. vectorization_params : dict | None The parameters for the vectorization step. categorical_interaction : str The column in the input data frame containing a binary descriptor used to fit 2-way interaction effects. References ---------- [1] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D.A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. *NeuroImage*, page 116893,2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2020.116893 """ # put defaults here for projection and vectorization step projection_defaults = { 'riemann': dict(scale=1, n_compo='full', reg=1.e-05), 'lw_riemann': dict(shrink=1), 'diag': dict(), 'log_diag': dict(), 'random': dict(n_compo='full'), 'naive': dict(), 'spoc': dict(n_compo='full', scale='auto', reg=1.e-05, shrink=1), 'riemann_wasserstein': dict() } vectorization_defaults = { 'riemann': dict(metric='riemann'), 'lw_riemann': dict(metric='riemann'), 'diag': dict(), 'log_diag': dict(), 'random': dict(), 'naive': dict(method='upper'), 'spoc': dict(), 'riemann_wasserstein': dict(rank='full') } assert set(projection_defaults) == set(vectorization_defaults) if method not in projection_defaults: raise ValueError( f"The `method` ('{method}') you specified is unknown.") # update defaults projection_params_ = projection_defaults[method] if projection_params is not None: projection_params_.update(**projection_params) vectorization_params_ = vectorization_defaults[method] if vectorization_params is not None: vectorization_params_.update(**vectorization_params) def _get_projector_vectorizer(projection, vectorization): return [(make_pipeline(* [projection(**projection_params_), vectorization(**vectorization_params_)]), name) for name in names] # setup pipelines (projection + vectorization step) steps = tuple() if method == 'riemann': steps = (ProjCommonSpace, Riemann) elif method == 'lw_riemann': steps = (ProjLWSpace, Riemann) elif method == 'diag': steps = (ProjIdentitySpace, Diag) elif method == 'log_diag': steps = (ProjIdentitySpace, LogDiag) elif method == 'random': steps = (ProjRandomSpace, LogDiag) elif method == 'naive': steps = (ProjIdentitySpace, NaiveVec) elif method == 'spoc': steps = (ProjSPoCSpace, LogDiag) elif method == 'riemann_wasserstein': steps = (ProjIdentitySpace, RiemannSnp) filter_bank_transformer = make_column_transformer( *_get_projector_vectorizer(*steps), remainder='passthrough') if categorical_interaction is not None: filter_bank_transformer = ExpandFeatures( filter_bank_transformer, expander_column=categorical_interaction) return filter_bank_transformer def make_filter_bank_regressor(names, method='riemann', projection_params=None, vectorization_params=None, categorical_interaction=None, scaling=None, estimator=None): """Generate pipeline for regression with filter bank model. Prepare filter bank models as used in [1]_. These models take as input sensor-space covariance matrices computed from M/EEG signals in different frequency bands. Then transformations are applied to improve the applicability of linear regression techniques by reducing the impact of field spread. In terms of implementation, this involves 1) projection (e.g. spatial filters) and 2) vectorization (e.g. taking the log on the diagonal). .. note:: The resulting model expects as inputs data frames in which different covarances (e.g. for different frequencies) are stored inside columns indexed by ``names``. Other columns will be passed through by the underlying column transformers. The pipeline also supports fitting categorical interaction effects after projection and vectorization steps are performed. .. note:: All essential methods from [1]_ are implemented here. In practice, we recommend comparing `riemann', `spoc' and `diag' as a baseline. Parameters ---------- names : list of str The column names of the data frame corresponding to different covariances. method : str The method used for extracting features from covariances. Defaults to ``'riemann'``. Can be ``'riemann'``, ``'lw_riemann'``, ``'diag'``, ``'log_diag'``, ``'random'``, ``'naive'``, ``'spoc'``, ``'riemann_wasserstein'``. projection_params : dict | None The parameters for the projection step. vectorization_params : dict | None The parameters for the vectorization step. categorical_interaction : str The column in the input data frame containing a binary descriptor used to fit 2-way interaction effects. scaling : scikit-learn Transformer object | None Method for re-rescaling the features. Defaults to None. If None, StandardScaler is used. estimator : scikit-learn Estimator object. The estimator object. Defaults to None. If None, RidgeCV is performed with default values. References ---------- [1] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D.A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. *NeuroImage*, page 116893,2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2020.116893 """ filter_bank_transformer = make_filter_bank_transformer( names=names, method=method, projection_params=projection_params, vectorization_params=vectorization_params, categorical_interaction=categorical_interaction ) scaling_ = scaling if scaling_ is None: scaling_ = StandardScaler() estimator_ = estimator if estimator_ is None: estimator_ = RidgeCV(alphas=np.logspace(-3, 5, 100)) filter_bank_regressor = make_pipeline( filter_bank_transformer, scaling_, estimator_ ) return filter_bank_regressor def make_filter_bank_classifier(names, method='riemann', projection_params=None, vectorization_params=None, categorical_interaction=None, scaling=None, estimator=None): """Generate pipeline for classification with filter bank model. Prepare filter bank models as used in [1]_. These models take as input sensor-space covariance matrices computed from M/EEG signals in different frequency bands. Then transformations are applied to improve the applicability of linear regression techniques by reducing the impact of field spread. In terms of implementation, this involves 1) projection (e.g. spatial filters) and 2) vectorization (e.g. taking the log on the diagonal). .. note:: The resulting model expects as inputs data frames in which different covarances (e.g. for different frequencies) are stored inside columns indexed by ``names``. Other columns will be passed through by the underlying column transformers. The pipeline also supports fitting categorical interaction effects after projection and vectorization steps are performed. .. note:: All essential methods from [1]_ are implemented here. In practice, we recommend comparing `riemann', `spoc' and `diag' as a baseline. Parameters ---------- names : list of str The column names of the data frame corresponding to different covariances. method : str The method used for extracting features from covariances. Defaults to ``'riemann'``. Can be ``'riemann'``, ``'lw_riemann'``, ``'diag'``, ``'log_diag'``, ``'random'``, ``'naive'``, ``'spoc'``, ``'riemann_wasserstein'``. projection_params : dict | None The parameters for the projection step. vectorization_params : dict | None The parameters for the vectorization step. categorical_interaction : str The column in the input data frame containing a binary descriptor used to fit 2-way interaction effects. scaling : scikit-learn Transformer object | None Method for re-rescaling the features. Defaults to None. If None, StandardScaler is used. estimator : scikit-learn Estimator object. The estimator object. Defaults to None. If None, LogisticRegression is performed with default values. References ---------- [1] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D.A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. *NeuroImage*, page 116893,2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2020.116893 """ filter_bank_transformer = make_filter_bank_transformer( names=names, method=method, projection_params=projection_params, vectorization_params=vectorization_params, categorical_interaction=categorical_interaction ) scaling_ = scaling if scaling_ is None: scaling_ = StandardScaler() estimator_ = estimator if estimator_ is None: estimator_ = LogisticRegression(solver='liblinear') filter_bank_regressor = make_pipeline( filter_bank_transformer, scaling_, estimator_ ) return filter_bank_regressor
37.685976
77
0.659574
1,374
12,361
5.820961
0.171761
0.027507
0.028882
0.012753
0.745561
0.736434
0.736434
0.729182
0.729182
0.729182
0
0.014614
0.258232
12,361
327
78
37.801223
0.857673
0.548338
0
0.33871
0
0
0.064218
0
0
0
0
0
0.008065
1
0.032258
false
0.008065
0.056452
0.008065
0.120968
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
fc91ef07b59bde91306bd73bcec484e360b1298a
108
py
Python
wouso/core/security/admin.py
AlexandruGhergut/wouso
f26244ff58ae626808ae8c58ccc93d21f9f2666f
[ "Apache-2.0" ]
117
2015-01-02T18:07:33.000Z
2021-01-06T22:36:25.000Z
wouso/core/security/admin.py
AlexandruGhergut/wouso
f26244ff58ae626808ae8c58ccc93d21f9f2666f
[ "Apache-2.0" ]
229
2015-01-12T07:07:58.000Z
2019-10-12T08:27:01.000Z
wouso/core/security/admin.py
AlexandruGhergut/wouso
f26244ff58ae626808ae8c58ccc93d21f9f2666f
[ "Apache-2.0" ]
96
2015-01-07T05:26:09.000Z
2020-06-25T07:28:51.000Z
from django.contrib import admin from wouso.core.security.models import Report admin.site.register(Report)
21.6
45
0.833333
16
108
5.625
0.75
0
0
0
0
0
0
0
0
0
0
0
0.092593
108
4
46
27
0.918367
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
5d75f5d30780e5997d5df3ca87b964d9add7b705
47
py
Python
blog/migrations/__init__.py
Amohammadi2/django-SPA-blog
5dc10894ba360569b4849cfda0c3340ea5a15fb8
[ "MIT" ]
2
2020-12-14T08:46:35.000Z
2021-06-03T17:26:45.000Z
blog/migrations/__init__.py
Amohammadi2/django-SPA-blog
5dc10894ba360569b4849cfda0c3340ea5a15fb8
[ "MIT" ]
null
null
null
blog/migrations/__init__.py
Amohammadi2/django-SPA-blog
5dc10894ba360569b4849cfda0c3340ea5a15fb8
[ "MIT" ]
null
null
null
# you just need to add some informations here
23.5
46
0.765957
8
47
4.5
1
0
0
0
0
0
0
0
0
0
0
0
0.212766
47
1
47
47
0.972973
0.914894
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
5d8e72c2a2b92c4afc6d55b1c762592baf4c02a2
147
py
Python
talleres_inov_docente/figures/plot_helpers.py
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
1e2aa1f9132c277162135a5463068801edab8d15
[ "CC0-1.0" ]
576
2016-03-20T10:05:58.000Z
2022-03-20T05:58:32.000Z
talleres_inov_docente/figures/plot_helpers.py
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
1e2aa1f9132c277162135a5463068801edab8d15
[ "CC0-1.0" ]
64
2016-03-20T08:56:49.000Z
2019-03-13T15:37:55.000Z
talleres_inov_docente/figures/plot_helpers.py
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
1e2aa1f9132c277162135a5463068801edab8d15
[ "CC0-1.0" ]
570
2016-03-20T19:23:07.000Z
2021-12-12T12:22:14.000Z
from matplotlib.colors import ListedColormap cm3 = ListedColormap(['#0000aa', '#ff2020', '#50ff50']) cm2 = ListedColormap(['#0000aa', '#ff2020'])
29.4
55
0.707483
14
147
7.428571
0.714286
0.384615
0.5
0
0
0
0
0
0
0
0
0.165414
0.095238
147
4
56
36.75
0.616541
0
0
0
0
0
0.238095
0
0
0
0
0
0
1
0
false
0
0.333333
0
0.333333
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
5
5da47e4e4410b3e8309f308ed349c9a9599c9032
2,225
py
Python
dymos/utils/test/test_hermite.py
kaushikponnapalli/dymos
3fba91d0fc2c0e8460717b1bec80774676287739
[ "Apache-2.0" ]
104
2018-09-08T16:52:27.000Z
2022-03-10T23:35:30.000Z
dymos/utils/test/test_hermite.py
kaushikponnapalli/dymos
3fba91d0fc2c0e8460717b1bec80774676287739
[ "Apache-2.0" ]
628
2018-06-27T20:32:59.000Z
2022-03-31T19:24:32.000Z
dymos/utils/test/test_hermite.py
kaushikponnapalli/dymos
3fba91d0fc2c0e8460717b1bec80774676287739
[ "Apache-2.0" ]
46
2018-06-27T20:54:07.000Z
2021-12-19T07:23:32.000Z
import unittest import numpy as np from numpy.testing import assert_almost_equal from dymos.utils.hermite import hermite_matrices class TestHermiteMatrices(unittest.TestCase): def test_quadratic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 1.0] tau_eval = np.linspace(-1, 1, 100) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [4.0, 4.0] ydot_given = [-4.0, 4.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**2 ydot_computed = 2.0 * (tau_eval * dt_dtau) # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) def test_cubic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 0.0, 1.0] tau_eval = np.linspace(-1, 1, 101) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [-8.0, 0.0, 8.0] ydot_given = [12.0, 0.0, 12.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**3 ydot_computed = 3.0 * (tau_eval * dt_dtau)**2 # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) if __name__ == '__main__': # pragma: no cover unittest.main()
31.785714
79
0.613483
357
2,225
3.613445
0.226891
0.054264
0.065891
0.034109
0.788372
0.755814
0.755814
0.755814
0.755814
0.722481
0
0.044264
0.279101
2,225
69
80
32.246377
0.759975
0.279551
0
0.363636
0
0
0.005041
0
0
0
0
0
0.151515
1
0.060606
false
0
0.121212
0
0.212121
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5db48c51cdf7033a6dcea32b1d26408dd6d2dbc0
1,891
py
Python
avod/datasets/kitti/kitti_aug_test.py
Ascend-Huawei/AVOD
ea62372517bbfa9d4020bc5ab2739ee182c63c56
[ "BSD-2-Clause" ]
null
null
null
avod/datasets/kitti/kitti_aug_test.py
Ascend-Huawei/AVOD
ea62372517bbfa9d4020bc5ab2739ee182c63c56
[ "BSD-2-Clause" ]
null
null
null
avod/datasets/kitti/kitti_aug_test.py
Ascend-Huawei/AVOD
ea62372517bbfa9d4020bc5ab2739ee182c63c56
[ "BSD-2-Clause" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from npu_bridge.npu_init import * import unittest import numpy as np from avod.datasets.kitti import kitti_aug class KittiAugTest(unittest.TestCase): def test_flip_boxes_3d(self): boxes_3d = np.array([ [1, 2, 3, 4, 5, 6, np.pi / 4], [1, 2, 3, 4, 5, 6, -np.pi / 4] ]) exp_flipped_boxes_3d = np.array([ [-1, 2, 3, 4, 5, 6, 3 * np.pi / 4], [-1, 2, 3, 4, 5, 6, -3 * np.pi / 4] ]) flipped_boxes_3d = kitti_aug.flip_boxes_3d(boxes_3d) np.testing.assert_almost_equal(flipped_boxes_3d, exp_flipped_boxes_3d)
33.767857
78
0.670016
285
1,891
4.364912
0.368421
0.096463
0.041801
0.051447
0.728296
0.728296
0.728296
0.728296
0.728296
0.715434
0
0.035952
0.205711
1,891
55
79
34.381818
0.792277
0.647277
0
0.125
0
0
0
0
0
0
0
0
0.0625
1
0.0625
false
0
0.25
0
0.375
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5de81bead5f0058007dc4a5e3ad313c7ed6b6535
191
py
Python
01-basic-programs/04-lines.py
ncodeitgithub1/python-get-hands-dirty-programs
c9edb9e0bc9b2580737ca185935427343c550f01
[ "Apache-2.0" ]
null
null
null
01-basic-programs/04-lines.py
ncodeitgithub1/python-get-hands-dirty-programs
c9edb9e0bc9b2580737ca185935427343c550f01
[ "Apache-2.0" ]
null
null
null
01-basic-programs/04-lines.py
ncodeitgithub1/python-get-hands-dirty-programs
c9edb9e0bc9b2580737ca185935427343c550f01
[ "Apache-2.0" ]
1
2021-07-19T13:20:34.000Z
2021-07-19T13:20:34.000Z
#4 lines: Fibonacci, tuple assignment parents, babies = (1, 1) while babies < 100: print ('This generation has {0} babies'.format(babies)) parents, babies = (babies, parents + babies)
38.2
59
0.691099
25
191
5.28
0.64
0.295455
0.287879
0
0
0
0
0
0
0
0
0.044586
0.17801
191
5
60
38.2
0.796178
0.188482
0
0
0
0
0.193548
0
0
0
0
0
0
1
0
true
0
0
0
0
0.25
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
5df24f88464dca8942f1f032db545a5522ed1674
8,796
py
Python
pyabsa/utils/preprocess.py
jackie930/PyABSA
3cf733f8b95610a69c985b4650309c24f42b44b5
[ "MIT" ]
null
null
null
pyabsa/utils/preprocess.py
jackie930/PyABSA
3cf733f8b95610a69c985b4650309c24f42b44b5
[ "MIT" ]
null
null
null
pyabsa/utils/preprocess.py
jackie930/PyABSA
3cf733f8b95610a69c985b4650309c24f42b44b5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # file: preprocess.py # author: jackie # Copyright (C) 2021. All Rights Reserved. import os import pandas as pd import argparse import emoji import re from sklearn.model_selection import train_test_split parser = argparse.ArgumentParser() parser.add_argument("--inpath", type=str, required=True, default='./raw_data/data1.csv') parser.add_argument("--folder_name", type=str, required=False, default='./custom') parser.add_argument("--task", type=str, required=False, default='aptepc') args = parser.parse_args() def convert(text, labels): # convert label to list try: labels = eval(labels) tags = ['O'] * len(text) sentiment = ['-999'] * len(text) for j in range(len(labels)): label = labels[j] sentiment_key = labels[j][3] if sentiment_key == '正': sentiment_value = 'Positive' elif sentiment_key == '负': sentiment_value = 'Negative' else: sentiment_value = 'Others' tags[label[4][0]] = 'B-ASP' sentiment[label[4][0]] = sentiment_value k = label[4][0] + 1 while k < label[4][1]: tags[k] = 'I-ASP' sentiment[k] = sentiment_value k += 1 return text, tags, sentiment except: print ("labels", labels) print ("text", text) def convert_tag(text, labels): # convert label to list try: labels = eval(labels) tags = ['O'] * len(text) sentiment = ['-999'] * len(text) for j in range(len(labels)): label = labels[j] sentiment_key = labels[j][3] if sentiment_key == '正': sentiment_value = 'Positive' elif sentiment_key == '负': sentiment_value = 'Negative' else: sentiment_value = 'Others' tags[label[4][0]] = 'B-'+label[1] sentiment[label[4][0]] = sentiment_value k = label[4][0] + 1 while k < label[4][1]: tags[k] = 'I-'+label[1] sentiment[k] = sentiment_value k += 1 return text, tags, sentiment except: print ("labels", labels) print ("text", text) def convert_sentiment(sentiment_key): if sentiment_key == '正': sentiment_value = 'Positive' else: sentiment_value = 'Negative' return sentiment_value def convert_apc(text, label): label_update = [(i[0], i[3], i[4]) for i in eval(label)] label_update = list(set(label_update)) str1_list = [] str2_list = [] str3_list = [] for j in range(len(label_update)): str1 = text[:label_update[j][2][0]] + '$T$ ' + text[label_update[j][2][1]:] str1_list.append(str1) str2_list.append(label_update[j][0]) str3_list.append(convert_sentiment(label_update[j][1])) return str1_list, str2_list, str3_list def filter_emoji(desstr, restr=''): # 过滤表情 try: co = re.compile(u'[\U00010000-\U0010ffff]') except re.error: co = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]') return co.sub(restr, desstr) def convert_to_atepc(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) data.columns = ['text', 'tag_sentiment_list'] # preprocess for emoji data['text'] = data['text'].map(lambda x: filter_emoji(x, restr='xx')) # 只保留review的长度小于600的 data = data[data['text'].str.len() <= 600] # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] text, tags, sentiment = convert(text, label) for word, tag, sen in zip(text, tags, sentiment): if word not in [',', '。', ' ', '\xa0', '\u2006', '\u3000', '\u2002', '\u2003', '\u2005', '\x0c', '\u2028', '\u2009', '\u200a']: f1.write(word + ' ' + tag + ' ' + sen + '\n') else: f1.write("\n") f1.write("\n") f1.close() print ("process atepc finished!") def convert_to_atepc_tag(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) data.columns = ['text', 'tag_sentiment_list'] # preprocess for emoji data['text'] = data['text'].map(lambda x: filter_emoji(x, restr='xx')) # drop id list not able to process # print (data.iloc[8832,:]) # data = data.drop([8832]) # 只保留review的长度小于600的 data = data[data['text'].str.len() <= 600] # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] text, tags, sentiment = convert(text, label) for word, tag, sen in zip(text, tags, sentiment): if word not in [',', '。', ' ', '\xa0', '\u2006', '\u3000', '\u2002', '\u2003', '\u2005', '\x0c', '\u2028', '\u2009', '\u200a']: f1.write(word + ' ' + tag + ' ' + sen + '\n') else: f1.write("\n") f1.write("\n") f1.close() print ("process atepc finished!") def convert_to_apc(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] str1_list, str2_list, str3_list = convert_apc(text, label) for x1, x2, x3 in zip(str1_list, str2_list, str3_list): f1.write(x1 + '\n') f1.write(x2 + '\n') f1.write(x3 + '\n') f1.close() print ("process apc finished!") def main(inpath, folder_name, task): if not os.path.exists(folder_name): os.makedirs(folder_name) if task == 'aptepc': # get folder name print ("start process for an aptepc task") folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt.atepc') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt.atepc') # process train convert_to_atepc(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_atepc(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") elif task == 'apc': # get folder name folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt') # process train convert_to_apc(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_apc(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") elif task == 'aptepc-tag': # get folder name print ("start process for an aptepc tag task") folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt.atepc') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt.atepc') # process train convert_to_atepc_tag(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_atepc_tag(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") main(args.inpath, args.folder_name, args.task)
32.820896
118
0.582651
1,140
8,796
4.30614
0.161404
0.052964
0.04889
0.040334
0.783866
0.752495
0.730088
0.72255
0.72255
0.705846
0
0.031726
0.268986
8,796
268
119
32.820896
0.731726
0.070714
0
0.663043
0
0
0.122574
0.006509
0
0
0
0
0
1
0.048913
false
0
0.032609
0
0.108696
0.081522
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f8e61b754a032cf61ead46cd66c6dc6f3690b256
121
py
Python
pytest_capture_log_error/test_file.py
butla/experiments
8c8ade15bb01978763d6618342fa42ad7563e38f
[ "MIT" ]
1
2020-06-01T02:41:45.000Z
2020-06-01T02:41:45.000Z
pytest_capture_log_error/test_file.py
butla/experiments
8c8ade15bb01978763d6618342fa42ad7563e38f
[ "MIT" ]
48
2019-12-26T16:38:19.000Z
2021-07-06T13:29:50.000Z
pytest_capture_log_error/test_file.py
butla/experiments
8c8ade15bb01978763d6618342fa42ad7563e38f
[ "MIT" ]
null
null
null
import a_file def test_a(capsys): assert a_file.bla() == 5 assert a_file.LOG_MESSAGE in capsys.readouterr().err
20.166667
56
0.719008
21
121
3.904762
0.666667
0.182927
0.268293
0
0
0
0
0
0
0
0
0.01
0.173554
121
5
57
24.2
0.81
0
0
0
0
0
0
0
0
0
0
0
0.5
1
0.25
false
0
0.25
0
0.5
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
1
0
0
0
0
0
0
0
5
5d1e0c02d27663acdb4392c5b988ee86f8972b53
147
py
Python
climbproject/climbapp/admin.py
javawolfpack/ClimbProject
508cf822a1eb0b78f7120a3d469ceb65e3b423f7
[ "MIT" ]
null
null
null
climbproject/climbapp/admin.py
javawolfpack/ClimbProject
508cf822a1eb0b78f7120a3d469ceb65e3b423f7
[ "MIT" ]
5
2018-11-24T16:15:24.000Z
2022-02-11T03:40:48.000Z
climbproject/climbapp/admin.py
javawolfpack/ClimbProject
508cf822a1eb0b78f7120a3d469ceb65e3b423f7
[ "MIT" ]
1
2018-11-24T16:13:49.000Z
2018-11-24T16:13:49.000Z
from django.contrib import admin #from .models import * from . import models # Register your models here. admin.site.register(models.ClimbModel)
18.375
38
0.782313
20
147
5.75
0.55
0
0
0
0
0
0
0
0
0
0
0
0.136054
147
7
39
21
0.905512
0.326531
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
5d314e81984e8fdd23c8fa9711722c873d27574a
160
py
Python
fieldservice/fieldservice/doctype/fieldservice_settings/test_fieldservice_settings.py
itsdaveit/fieldservice
90bd813fb01f23a18df3b24fc67ec86c4d8be5a5
[ "MIT" ]
null
null
null
fieldservice/fieldservice/doctype/fieldservice_settings/test_fieldservice_settings.py
itsdaveit/fieldservice
90bd813fb01f23a18df3b24fc67ec86c4d8be5a5
[ "MIT" ]
null
null
null
fieldservice/fieldservice/doctype/fieldservice_settings/test_fieldservice_settings.py
itsdaveit/fieldservice
90bd813fb01f23a18df3b24fc67ec86c4d8be5a5
[ "MIT" ]
1
2021-11-09T10:26:06.000Z
2021-11-09T10:26:06.000Z
# Copyright (c) 2022, itsdve GmbH and Contributors # See license.txt # import frappe import unittest class TestFieldserviceSettings(unittest.TestCase): pass
17.777778
50
0.79375
19
160
6.684211
0.894737
0
0
0
0
0
0
0
0
0
0
0.028986
0.1375
160
8
51
20
0.891304
0.4875
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
0
0
0
5
5d43ba93812ece31b158196b6ad2d32a374bd0f8
147
py
Python
annotate/backend/admin.py
hopeogbons/image-annotation
2d8b1799bc791428fd3ab29d8052195996923130
[ "Apache-2.0" ]
null
null
null
annotate/backend/admin.py
hopeogbons/image-annotation
2d8b1799bc791428fd3ab29d8052195996923130
[ "Apache-2.0" ]
11
2021-03-09T10:15:39.000Z
2022-02-26T13:53:51.000Z
annotate/backend/admin.py
hopeogbons/image-annotation
2d8b1799bc791428fd3ab29d8052195996923130
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from annotate.backend.models import Image, Annotation admin.site.register(Image) admin.site.register(Annotation)
24.5
53
0.836735
20
147
6.15
0.6
0.146341
0.276423
0
0
0
0
0
0
0
0
0
0.081633
147
5
54
29.4
0.911111
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
53a80bedba1fa544dba66c5282310b99391dfaba
917
py
Python
MathPainting_OOP/shapes.py
matbocz/kurs-python-udemy
bbc53d0b2073b400aaad5ff908b3e1c09b815121
[ "MIT" ]
null
null
null
MathPainting_OOP/shapes.py
matbocz/kurs-python-udemy
bbc53d0b2073b400aaad5ff908b3e1c09b815121
[ "MIT" ]
null
null
null
MathPainting_OOP/shapes.py
matbocz/kurs-python-udemy
bbc53d0b2073b400aaad5ff908b3e1c09b815121
[ "MIT" ]
null
null
null
class Rectangle: """A rectangle shape that can be drawn on a Canvas object""" def __init__(self, x, y, width, height, color): self.x = x self.y = y self.width = width self.height = height self.color = color def draw(self, canvas): """Draws itself into the Canvas object""" # Changes a slice of the array with new values canvas.data[self.x: self.x + self.height, self.y: self.y + self.width] = self.color class Square: """A square shape that can be drawn on a Canvas object""" def __init__(self, x, y, side, color): self.x = x self.y = y self.side = side self.color = color def draw(self, canvas): """Draws itself into the Canvas object""" # Changes a slice of the array with new values canvas.data[self.x: self.x + self.side, self.y: self.y + self.side] = self.color
30.566667
91
0.591058
138
917
3.869565
0.246377
0.074906
0.067416
0.052434
0.7603
0.707865
0.707865
0.707865
0.629213
0.629213
0
0
0.2988
917
29
92
31.62069
0.830482
0.293348
0
0.470588
0
0
0
0
0
0
0
0
0
1
0.235294
false
0
0
0
0.352941
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
0
0
0
5
53b7cf475edf549606a00bf10c8b39ab817c0d94
72
py
Python
testjpkg/jsonify/hij.py
thisisishara/test_pypi_cli
15b22ed8943a18a6d9de9ee4ba6a84249a633e2e
[ "MIT" ]
null
null
null
testjpkg/jsonify/hij.py
thisisishara/test_pypi_cli
15b22ed8943a18a6d9de9ee4ba6a84249a633e2e
[ "MIT" ]
null
null
null
testjpkg/jsonify/hij.py
thisisishara/test_pypi_cli
15b22ed8943a18a6d9de9ee4ba6a84249a633e2e
[ "MIT" ]
null
null
null
print("hiiiiiiiiiiiiiiiix") def sayhi(): print("2nd pkg said hi")
12
28
0.666667
9
72
5.333333
0.888889
0
0
0
0
0
0
0
0
0
0
0.016949
0.180556
72
5
29
14.4
0.79661
0
0
0
0
0
0.458333
0
0
0
0
0
0
1
0.333333
true
0
0
0
0.333333
0.666667
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
0
0
1
0
5
54db106024a4f46cf548821fe280245ccaf57da7
114
py
Python
azbankgateways/views/__init__.py
lordmahyar/az-iranian-bank-gateways
e9eb7101f2b91318847d63d783c22c4a8d430ba3
[ "MIT" ]
196
2020-12-07T11:29:19.000Z
2022-03-23T09:32:56.000Z
azbankgateways/views/__init__.py
lordmahyar/az-iranian-bank-gateways
e9eb7101f2b91318847d63d783c22c4a8d430ba3
[ "MIT" ]
25
2021-01-13T11:56:35.000Z
2022-03-14T19:41:51.000Z
azbankgateways/views/__init__.py
lordmahyar/az-iranian-bank-gateways
e9eb7101f2b91318847d63d783c22c4a8d430ba3
[ "MIT" ]
44
2021-01-08T18:27:47.000Z
2022-03-22T03:36:04.000Z
from .banks import callback_view, go_to_bank_gateway from .samples import sample_payment_view, sample_result_view
38
60
0.877193
18
114
5.111111
0.722222
0
0
0
0
0
0
0
0
0
0
0
0.087719
114
2
61
57
0.884615
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
54f4e0fec59282b2d1c7f1cba1c1b99fa606ce17
70
py
Python
nemo/collections/nlp/losses/__init__.py
KalifiaBillal/NeMo
4fc670ad0c886be2623247921d4311ba30f486f8
[ "Apache-2.0" ]
1
2021-01-26T21:54:36.000Z
2021-01-26T21:54:36.000Z
nemo/collections/nlp/losses/__init__.py
aiskumo/NeMo
b51a39f9834ad50db77c4246aeb6e2349695add5
[ "Apache-2.0" ]
null
null
null
nemo/collections/nlp/losses/__init__.py
aiskumo/NeMo
b51a39f9834ad50db77c4246aeb6e2349695add5
[ "Apache-2.0" ]
2
2021-02-04T14:45:50.000Z
2021-02-04T14:56:05.000Z
from nemo.collections.nlp.losses.sgd_loss import SGDDialogueStateLoss
35
69
0.885714
9
70
6.777778
1
0
0
0
0
0
0
0
0
0
0
0
0.057143
70
1
70
70
0.924242
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4ad35edb76ff8aacbd63002439bbf9d2f5995fd2
59
py
Python
pyecsca/sca/re/__init__.py
scrambler-crypto/pyecsca
491abfb548455669abd470382a48dcd07b2eda87
[ "MIT" ]
24
2019-07-01T00:27:24.000Z
2022-02-17T00:46:28.000Z
pyecsca/sca/re/__init__.py
scrambler-crypto/pyecsca
491abfb548455669abd470382a48dcd07b2eda87
[ "MIT" ]
18
2020-12-10T15:08:56.000Z
2022-03-01T11:44:37.000Z
pyecsca/sca/re/__init__.py
scrambler-crypto/pyecsca
491abfb548455669abd470382a48dcd07b2eda87
[ "MIT" ]
7
2020-02-20T18:44:29.000Z
2021-11-30T21:16:44.000Z
"""Package for reverse-engineering.""" from .rpa import *
14.75
38
0.694915
7
59
5.857143
1
0
0
0
0
0
0
0
0
0
0
0
0.135593
59
3
39
19.666667
0.803922
0.542373
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4afc50cce044689d528dbbb6c10aa634c6f79ad7
87
py
Python
src/server_py3/aps/src/wes/api/v1/users/__init__.py
kfrime/yonder
cd2f491c24f8552aeadd6ee48c601e1194a2e082
[ "MIT" ]
null
null
null
src/server_py3/aps/src/wes/api/v1/users/__init__.py
kfrime/yonder
cd2f491c24f8552aeadd6ee48c601e1194a2e082
[ "MIT" ]
12
2020-01-04T03:30:02.000Z
2021-06-02T01:22:45.000Z
src/server_py3/aps/src/wes/api/v1/users/__init__.py
kfrime/yonder
cd2f491c24f8552aeadd6ee48c601e1194a2e082
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from . import signup, signin, signout, update, info, detail
21.75
60
0.701149
12
87
5.083333
1
0
0
0
0
0
0
0
0
0
0
0.013889
0.172414
87
3
61
29
0.833333
0.241379
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
ab30352abcf50690534a3f85202149cd132e631c
46
py
Python
src/webpy1/src/manage/checkPic.py
ptphp/PyLib
07ac99cf2deb725475f5771b123b9ea1375f5e65
[ "Apache-2.0" ]
1
2020-02-17T08:18:29.000Z
2020-02-17T08:18:29.000Z
src/webpy1/src/manage/checkPic.py
ptphp/PyLib
07ac99cf2deb725475f5771b123b9ea1375f5e65
[ "Apache-2.0" ]
null
null
null
src/webpy1/src/manage/checkPic.py
ptphp/PyLib
07ac99cf2deb725475f5771b123b9ea1375f5e65
[ "Apache-2.0" ]
null
null
null
''' Created on 2011-6-22 @author: dholer '''
7.666667
20
0.608696
7
46
4
1
0
0
0
0
0
0
0
0
0
0
0.184211
0.173913
46
5
21
9.2
0.552632
0.804348
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
ab30973f8a964fee614a5ec7df1f83c6a91d145f
122
py
Python
tests/__init__.py
coleb/sendoff
fc1b38ba7571254a88ca457f6f618ae4572f30b6
[ "MIT" ]
2
2021-09-28T09:53:53.000Z
2021-10-01T17:45:29.000Z
tests/__init__.py
coleb/sendoff
fc1b38ba7571254a88ca457f6f618ae4572f30b6
[ "MIT" ]
10
2021-09-17T22:14:37.000Z
2022-03-21T16:25:39.000Z
tests/__init__.py
coleb/sendoff
fc1b38ba7571254a88ca457f6f618ae4572f30b6
[ "MIT" ]
1
2021-09-27T15:55:40.000Z
2021-09-27T15:55:40.000Z
"""Tests for the `sendoff` library.""" """ The `sendoff` library tests validate the expected function of the library. """
24.4
74
0.704918
16
122
5.375
0.5625
0.232558
0.395349
0
0
0
0
0
0
0
0
0
0.147541
122
4
75
30.5
0.826923
0.262295
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
ab450e026b0907e8b838f6f9a3e2ba1d4218dd25
5,065
py
Python
cmibs/cisco_vlan_membership_mib.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
cmibs/cisco_vlan_membership_mib.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
cmibs/cisco_vlan_membership_mib.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# ---------------------------------------------------------------------- # CISCO-VLAN-MEMBERSHIP-MIB # Compiled MIB # Do not modify this file directly # Run ./noc mib make-cmib instead # ---------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # MIB Name NAME = "CISCO-VLAN-MEMBERSHIP-MIB" # Metadata LAST_UPDATED = "2007-12-14" COMPILED = "2020-01-19" # MIB Data: name -> oid MIB = { "CISCO-VLAN-MEMBERSHIP-MIB::ciscoVlanMembershipMIB": "1.3.6.1.4.1.9.9.68", "CISCO-VLAN-MEMBERSHIP-MIB::ciscoVlanMembershipMIBObjects": "1.3.6.1.4.1.9.9.68.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmps": "1.3.6.1.4.1.9.9.68.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsVQPVersion": "1.3.6.1.4.1.9.9.68.1.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsRetries": "1.3.6.1.4.1.9.9.68.1.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsReconfirmInterval": "1.3.6.1.4.1.9.9.68.1.1.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsReconfirm": "1.3.6.1.4.1.9.9.68.1.1.4", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsReconfirmResult": "1.3.6.1.4.1.9.9.68.1.1.5", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsCurrent": "1.3.6.1.4.1.9.9.68.1.1.6", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsTable": "1.3.6.1.4.1.9.9.68.1.1.7", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsEntry": "1.3.6.1.4.1.9.9.68.1.1.7.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsIpAddress": "1.3.6.1.4.1.9.9.68.1.1.7.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsPrimary": "1.3.6.1.4.1.9.9.68.1.1.7.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsRowStatus": "1.3.6.1.4.1.9.9.68.1.1.7.1.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembership": "1.3.6.1.4.1.9.9.68.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryTable": "1.3.6.1.4.1.9.9.68.1.2.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryEntry": "1.3.6.1.4.1.9.9.68.1.2.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryVlanIndex": "1.3.6.1.4.1.9.9.68.1.2.1.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryMemberPorts": "1.3.6.1.4.1.9.9.68.1.2.1.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryMember2kPorts": "1.3.6.1.4.1.9.9.68.1.2.1.1.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipTable": "1.3.6.1.4.1.9.9.68.1.2.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipEntry": "1.3.6.1.4.1.9.9.68.1.2.2.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlanType": "1.3.6.1.4.1.9.9.68.1.2.2.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlan": "1.3.6.1.4.1.9.9.68.1.2.2.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmPortStatus": "1.3.6.1.4.1.9.9.68.1.2.2.1.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlans": "1.3.6.1.4.1.9.9.68.1.2.2.1.4", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlans2k": "1.3.6.1.4.1.9.9.68.1.2.2.1.5", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlans3k": "1.3.6.1.4.1.9.9.68.1.2.2.1.6", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlans4k": "1.3.6.1.4.1.9.9.68.1.2.2.1.7", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryExtTable": "1.3.6.1.4.1.9.9.68.1.2.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryExtEntry": "1.3.6.1.4.1.9.9.68.1.2.3.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipPortRangeIndex": "1.3.6.1.4.1.9.9.68.1.2.3.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMembershipSummaryExtPorts": "1.3.6.1.4.1.9.9.68.1.2.3.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmVlanCreationMode": "1.3.6.1.4.1.9.9.68.1.2.4", "CISCO-VLAN-MEMBERSHIP-MIB::vmStatistics": "1.3.6.1.4.1.9.9.68.1.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmVQPQueries": "1.3.6.1.4.1.9.9.68.1.3.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVQPResponses": "1.3.6.1.4.1.9.9.68.1.3.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsChanges": "1.3.6.1.4.1.9.9.68.1.3.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmVQPShutdown": "1.3.6.1.4.1.9.9.68.1.3.4", "CISCO-VLAN-MEMBERSHIP-MIB::vmVQPDenied": "1.3.6.1.4.1.9.9.68.1.3.5", "CISCO-VLAN-MEMBERSHIP-MIB::vmVQPWrongDomain": "1.3.6.1.4.1.9.9.68.1.3.6", "CISCO-VLAN-MEMBERSHIP-MIB::vmVQPWrongVersion": "1.3.6.1.4.1.9.9.68.1.3.7", "CISCO-VLAN-MEMBERSHIP-MIB::vmInsufficientResources": "1.3.6.1.4.1.9.9.68.1.3.8", "CISCO-VLAN-MEMBERSHIP-MIB::vmStatus": "1.3.6.1.4.1.9.9.68.1.4", "CISCO-VLAN-MEMBERSHIP-MIB::vmNotificationsEnabled": "1.3.6.1.4.1.9.9.68.1.4.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVoiceVlan": "1.3.6.1.4.1.9.9.68.1.5", "CISCO-VLAN-MEMBERSHIP-MIB::vmVoiceVlanTable": "1.3.6.1.4.1.9.9.68.1.5.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVoiceVlanEntry": "1.3.6.1.4.1.9.9.68.1.5.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVoiceVlanId": "1.3.6.1.4.1.9.9.68.1.5.1.1.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmVoiceVlanCdpVerifyEnable": "1.3.6.1.4.1.9.9.68.1.5.1.1.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmNotifications": "1.3.6.1.4.1.9.9.68.2", "CISCO-VLAN-MEMBERSHIP-MIB::vmNotificationsPrefix": "1.3.6.1.4.1.9.9.68.2.0", "CISCO-VLAN-MEMBERSHIP-MIB::vmVmpsChange": "1.3.6.1.4.1.9.9.68.2.0.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMIBConformance": "1.3.6.1.4.1.9.9.68.3", "CISCO-VLAN-MEMBERSHIP-MIB::vmMIBCompliances": "1.3.6.1.4.1.9.9.68.3.1", "CISCO-VLAN-MEMBERSHIP-MIB::vmMIBGroups": "1.3.6.1.4.1.9.9.68.3.2", } DISPLAY_HINTS = {}
64.113924
98
0.62231
1,027
5,065
3.067186
0.10224
0.04381
0.349841
0.405079
0.600635
0.486032
0.299365
0.226667
0.226667
0.223492
0
0.166881
0.079566
5,065
78
99
64.935897
0.508795
0.082922
0
0
0
0.83871
0.83614
0.814983
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
ab5b1e3328548b4d29719e9eabea190e03a2dd78
78,836
py
Python
bifacialvf/vf.py
shirubana/bifacialvf
7cd1c4c658bb7a68f0815b2bd1a6d5c492ca7300
[ "BSD-3-Clause" ]
1
2020-05-20T06:19:40.000Z
2020-05-20T06:19:40.000Z
bifacialvf/vf.py
shirubana/bifacialvf
7cd1c4c658bb7a68f0815b2bd1a6d5c492ca7300
[ "BSD-3-Clause" ]
null
null
null
bifacialvf/vf.py
shirubana/bifacialvf
7cd1c4c658bb7a68f0815b2bd1a6d5c492ca7300
[ "BSD-3-Clause" ]
1
2020-12-30T08:05:49.000Z
2020-12-30T08:05:49.000Z
# -*- coding: utf-8 -*- """ ViewFactor module - VF calculation helper files for bifacial-viewfactor @author Bill Marion @translated to python by sayala 06/09/17 """ # ensure python3 compatible division and printing from __future__ import division, print_function, absolute_import import math import numpy as np from sun import solarPos, sunIncident, perezComp, aOIcorrection import logging # TODO: set level or add formatters if more advanced logging required LOGGER = logging.getLogger(__name__) # only used to raise errors DTOR = math.pi / 180.0 # Factor for converting from degrees to radians def getBackSurfaceIrradiances(rowType, maxShadow, PVbackSurface, beta, sazm, dni, dhi, C, D, albedo, zen, azm, cellRows, pvBackSH, rearGroundGHI, frontGroundGHI, frontReflected, offset=0): """ This method calculates the AOI corrected irradiance on the back of the PV module/panel. 11/19/2015 Added rowType and other changes to distinguish between types of rows. 4/19/2016 Added input of offset of reference cell from PV module back (in PV panel slope lengths) for modeling Sara's reference cell measurements, should be set to zero for PV module cell irradiances. Added while loop so projected Xs aren't too negative causing array index problems (<0) 12/13/2016:: while (projectedX1 < -100.0 || projectedX2 < -100.0): # Offset so array indexes are >= -100.0 12/13/2016 projectedX1 += 100.0; projectedX2 += 100.0; Parameters ---------- rowType : str Type of row: "first", "interior", "last", or "single" maxShadow Maximum shadow length projected to the front(-) or rear (+) from the front of the module PVbackSurface PV module back surface material type, either "glass" or "ARglass" beta Tilt from horizontal of the PV modules/panels (deg) (for front surface) sazm Surface azimuth of PV panels (deg) (for front surface) dni Direct normal irradiance (W/m2) dhi Diffuse horizontal irradiance (W/m2) C Ground clearance of PV panel (in PV panel slope lengths) D Horizontal distance between rows of PV panels (in PV panel slope lengths) albedo Ground albedo zen Sun zenith (in radians) azm Sun azimuth (in radians) pvBackSH Decimal fraction of the back surface of the PV panel that is shaded, 0.0 to 1.0 rearGroundGHI : array of size [100] Global horizontal irradiance for each of 100 ground segments (W/m2) frontGroundGHI : array of size [100] Global horizontal irradiance for each of 100 ground segments (W/m2) frontReflected : array of size [cellRows] Irradiance reflected from the front of the PV module/panel (W/m2) in the row behind the one of interest offset Offset of reference cell from PV module back (in PV panel slope lengths), set to zero for PV module cell irradiances Returns ------- backGTI : array of size [cellRows] AOI corrected irradiance on back side of PV module/panel, one for each cell row (W/m2) aveGroundGHI : numeric Average GHI on ground under PV array Notes ----- 1-degree hemispherical segment AOI correction factor for glass (index=0) and ARglass (index=1) """ backGTI = [] SegAOIcor = [ [0.057563, 0.128570, 0.199651, 0.265024, 0.324661, 0.378968, 0.428391, 0.473670, 0.514788, 0.552454, 0.586857, 0.618484, 0.647076, 0.673762, 0.698029, 0.720118, 0.740726, 0.759671, 0.776946, 0.792833, 0.807374, 0.821010, 0.833534, 0.845241, 0.855524, 0.865562, 0.874567, 0.882831, 0.890769, 0.897939, 0.904373, 0.910646, 0.916297, 0.921589, 0.926512, 0.930906, 0.935179, 0.939074, 0.942627, 0.946009, 0.949096, 0.952030, 0.954555, 0.957157, 0.959669, 0.961500, 0.963481, 0.965353, 0.967387, 0.968580, 0.970311, 0.971567, 0.972948, 0.974114, 0.975264, 0.976287, 0.977213, 0.978142, 0.979057, 0.979662, 0.980460, 0.981100, 0.981771, 0.982459, 0.982837, 0.983199, 0.983956, 0.984156, 0.984682, 0.985026, 0.985364, 0.985645, 0.985954, 0.986241, 0.986484, 0.986686, 0.986895, 0.987043, 0.987287, 0.987388, 0.987541, 0.987669, 0.987755, 0.987877, 0.987903, 0.987996, 0.988022, 0.988091, 0.988104, 0.988114, 0.988114, 0.988104, 0.988091, 0.988022, 0.987996, 0.987903, 0.987877, 0.987755, 0.987669, 0.987541, 0.987388, 0.987287, 0.987043, 0.986895, 0.986686, 0.986484, 0.986240, 0.985954, 0.985645, 0.985364, 0.985020, 0.984676, 0.984156, 0.983956, 0.983199, 0.982837, 0.982459, 0.981771, 0.981100, 0.980460, 0.979662, 0.979057, 0.978142, 0.977213, 0.976287, 0.975264, 0.974114, 0.972947, 0.971567, 0.970311, 0.968580, 0.967387, 0.965353, 0.963481, 0.961501, 0.959671, 0.957157, 0.954555, 0.952030, 0.949096, 0.946009, 0.942627, 0.939074, 0.935179, 0.930906, 0.926512, 0.921589, 0.916297, 0.910646, 0.904373, 0.897939, 0.890769, 0.882831, 0.874567, 0.865562, 0.855524, 0.845241, 0.833534, 0.821010, 0.807374, 0.792833, 0.776946, 0.759671, 0.740726, 0.720118, 0.698029, 0.673762, 0.647076, 0.618484, 0.586857, 0.552454, 0.514788, 0.473670, 0.428391, 0.378968, 0.324661, 0.265024, 0.199651, 0.128570, 0.057563], [0.062742, 0.139913, 0.216842, 0.287226, 0.351055, 0.408796, 0.460966, 0.508397, 0.551116, 0.589915, 0.625035, 0.657029, 0.685667, 0.712150, 0.735991, 0.757467, 0.777313, 0.795374, 0.811669, 0.826496, 0.839932, 0.852416, 0.863766, 0.874277, 0.883399, 0.892242, 0.900084, 0.907216, 0.914023, 0.920103, 0.925504, 0.930744, 0.935424, 0.939752, 0.943788, 0.947313, 0.950768, 0.953860, 0.956675, 0.959339, 0.961755, 0.964039, 0.965984, 0.967994, 0.969968, 0.971283, 0.972800, 0.974223, 0.975784, 0.976647, 0.977953, 0.978887, 0.979922, 0.980773, 0.981637, 0.982386, 0.983068, 0.983759, 0.984436, 0.984855, 0.985453, 0.985916, 0.986417, 0.986934, 0.987182, 0.987435, 0.988022, 0.988146, 0.988537, 0.988792, 0.989043, 0.989235, 0.989470, 0.989681, 0.989857, 0.990006, 0.990159, 0.990263, 0.990455, 0.990515, 0.990636, 0.990731, 0.990787, 0.990884, 0.990900, 0.990971, 0.990986, 0.991042, 0.991048, 0.991057, 0.991057, 0.991048, 0.991042, 0.990986, 0.990971, 0.990900, 0.990884, 0.990787, 0.990731, 0.990636, 0.990515, 0.990455, 0.990263, 0.990159, 0.990006, 0.989857, 0.989681, 0.989470, 0.989235, 0.989043, 0.988787, 0.988532, 0.988146, 0.988022, 0.987435, 0.987182, 0.986934, 0.986417, 0.985916, 0.985453, 0.984855, 0.984436, 0.983759, 0.983068, 0.982386, 0.981637, 0.980773, 0.979920, 0.978887, 0.977953, 0.976647, 0.975784, 0.974223, 0.972800, 0.971284, 0.969970, 0.967994, 0.965984, 0.964039, 0.961755, 0.959339, 0.956675, 0.953860, 0.950768, 0.947313, 0.943788, 0.939752, 0.935424, 0.930744, 0.925504, 0.920103, 0.914023, 0.907216, 0.900084, 0.892242, 0.883399, 0.874277, 0.863766, 0.852416, 0.839932, 0.826496, 0.811669, 0.795374, 0.777313, 0.757467, 0.735991, 0.712150, 0.685667, 0.657029, 0.625035, 0.589915, 0.551116, 0.508397, 0.460966, 0.408796, 0.351055, 0.287226, 0.216842, 0.139913, 0.062742]] # Tilt from horizontal of the PV modules/panels, in radians beta = beta * DTOR sazm = sazm * DTOR # Surface azimuth of PV module/panels, in radians # 1. Calculate and assign various paramters to be used for modeling # irradiances # For calling PerezComp to break diffuse into components for zero tilt # (horizontal) iso_dif = 0.0; circ_dif = 0.0; horiz_dif = 0.0; grd_dif = 0.0; beam = 0.0 # Call to get iso_dif for horizontal surface ghi, iso_dif, circ_dif, horiz_dif, grd_dif, beam = perezComp( dni, dhi, albedo, zen, 0.0, zen) # Isotropic irradiance from sky on horizontal surface, used later for # determining isotropic sky component iso_sky_dif = iso_dif # For calling PerezComp to break diffuse into components for 90 degree tilt # (vertical) inc, tiltr, sazmr = sunIncident(0, 90.0, 180.0, 45.0, zen, azm) # Call to get horiz_dif for vertical surface vti, iso_dif, circ_dif, horiz_dif, grd_dif, beam = perezComp( dni, dhi, albedo, inc, tiltr, zen) # Horizon diffuse irradiance on a vertical surface, used later for # determining horizon brightening irradiance component F2DHI = horiz_dif index = -99 n2 = -99.9 if (PVbackSurface == "glass"): # Index to use with 1-degree hemispherical segment AOI correction # factor array index = 0 n2 = 1.526 # Index of refraction for glass elif (PVbackSurface == "ARglass"): # Index to use with 1-degree hemispherical segment AOI correction # factor array index = 1 n2 = 1.300 # Index of refraction for ARglass else: raise Exception( "Incorrect text input for PVbackSurface." " Must be glass or ARglass.") # Reflectance at normal incidence, Duffie and Beckman p217 Ro = math.pow((n2 - 1.0) / (n2 + 1.0), 2.0) # Average GHI on ground under PV array for cases when x projection exceed # 2*rtr aveGroundGHI = 0.0 for i in range(0,100): aveGroundGHI += rearGroundGHI[i] / 100.0 # Calculate x,y coordinates of bottom and top edges of PV row in back of desired PV row so that portions of sky and ground viewed by the # PV cell may be determined. Origin of x-y axis is the ground pobelow the lower front edge of the desired PV row. The row in back of # the desired row is in the positive x direction. h = math.sin(beta); # Vertical height of sloped PV panel (in PV panel slope lengths) x1 = math.cos(beta); # Horizontal distance from front of panel to rear of panel (in PV panel slope lengths) rtr = D + x1; # Row-to-row distance (in PV panel slope lengths) PbotX = rtr; # x value for poon bottom egde of PV module/panel of row in back of (in PV panel slope lengths) PbotY = C; # y value for poon bottom egde of PV module/panel of row in back of (in PV panel slope lengths) PtopX = rtr + x1; # x value for poon top egde of PV module/panel of row in back of (in PV panel slope lengths) PtopY = h + C; # y value for poon top egde of PV module/panel of row in back of (in PV panel slope lengths) # 2. Calculate diffuse and direct component irradiances for each cell row for i in range (0, cellRows): # Calculate diffuse irradiances and reflected amounts for each cell row over it's field of view of 180 degrees, # beginning with the angle providing the upper most view of the sky (j=0) #PcellX = x1 * (i + 0.5) / ((double)cellRows); # x value for location of PV cell #PcellY = C + h * (i + 0.5) / ((double)cellRows); # y value for location of PV cell PcellX = x1 * (i + 0.5) / (cellRows) + offset * math.sin(beta); # x value for location of PV cell with OFFSET FOR SARA REFERENCE CELLS 4/26/2016 PcellY = C + h * (i + 0.5) / (cellRows) - offset * math.cos(beta); # y value for location of PV cell with OFFSET FOR SARA REFERENCE CELLS 4/26/2016 elvUP = math.atan((PtopY - PcellY) / (PtopX - PcellX)); # Elevation angle up from PV cell to top of PV module/panel, radians elvDOWN = math.atan((PcellY - PbotY) / (PbotX - PcellX)); # Elevation angle down from PV cell to bottom of PV module/panel, radians if (rowType == "last" or rowType == "single"): # 4/19/16 No array to the rear for these cases elvUP = 0.0; elvDOWN = 0.0; #Console.WriteLine("ElvUp = 0", elvUP / DTOR); #if (i == 0) # Console.WriteLine("ElvDown = 0", elvDOWN / DTOR); #123 #iStopIso = Convert.ToInt32((beta - elvUP) / DTOR); # Last whole degree in arc range that sees sky, first is 0 #Console.WriteLine("iStopIso = 0", iStopIso); #iHorBright = Convert.ToInt32(max(0.0, 6.0 - elvUP / DTOR)); # Number of whole degrees for which horizon brightening occurs #iStartGrd = Convert.ToInt32((beta + elvDOWN) / DTOR); # First whole degree in arc range that sees ground, last is 180 iStopIso = int(round((beta - elvUP) / DTOR)); # Last whole degree in arc range that sees sky, first is 0 #Console.WriteLine("iStopIso = 0", iStopIso); iHorBright = int(round(max(0.0, 6.0 - elvUP / DTOR))); # Number of whole degrees for which horizon brightening occurs iStartGrd = int(round((beta + elvDOWN) / DTOR)); # First whole degree in arc range that sees ground, last is 180 backGTI.append(0.0) # Initialtize front GTI for j in range (0, iStopIso): # Add sky diffuse component and horizon brightening if present backGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * iso_sky_dif; # Sky radiation # backGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * iso_sky_dif; # Sky radiation if ((iStopIso - j) <= iHorBright): # Add horizon brightening term if seen backGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * F2DHI / 0.052264; # 0.052246 = 0.5 * [cos(84) - cos(90)] #backGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * F2DHI / 0.052264; # 0.052246 = 0.5 * [cos(84) - cos(90)] if (rowType == "interior" or rowType == "first"): # 4/19/16 Only add reflections from PV modules for these cases for j in range (iStopIso, iStartGrd): #j = iStopIso; j < iStartGrd; j++) # Add relections from PV module front surfaces L = (PbotX - PcellX) / math.cos(elvDOWN); # Diagonal distance from cell to bottom of module in row behind startAlpha = -(j - iStopIso) * DTOR + elvUP + elvDOWN; stopAlpha = -(j + 1 - iStopIso) * DTOR + elvUP + elvDOWN; m = L * math.sin(startAlpha); theta = math.pi - elvDOWN - (math.pi / 2.0 - startAlpha) - beta; projectedX2 = m / math.cos(theta); # Projected distance on sloped PV module m = L * math.sin(stopAlpha); theta = math.pi - elvDOWN - (math.pi / 2.0 - stopAlpha) - beta; projectedX1 = m / math.cos(theta); # Projected distance on sloped PV module projectedX1 = max(0.0, projectedX1); #Console.WriteLine("j= 0 projected X1 = 1,6:0.000 projected X2 = 2,6:0.000", j, projectedX1, projectedX2); PVreflectedIrr = 0.0; # Irradiance from PV module front cover reflections deltaCell = 1.0 / cellRows; # Length of cell in sloped direction in module/panel units (dimensionless) for k in range (0, cellRows): # Determine which cells in behind row are seen, and their reflected irradiance cellBot = k * deltaCell; # Position of bottom of cell along PV module/panel cellTop = (k + 1) * deltaCell; # Position of top of cell along PV module/panel cellLengthSeen = 0.0; # Length of cell seen for this row, start with zero if (cellBot >= projectedX1 and cellTop <= projectedX2): cellLengthSeen = cellTop - cellBot; # Sees the whole cell elif (cellBot <= projectedX1 and cellTop >= projectedX2): cellLengthSeen = projectedX2 - projectedX1; # Sees portion in the middle of cell elif (cellBot >= projectedX1 and projectedX2 > cellBot and cellTop >= projectedX2): cellLengthSeen = projectedX2 - cellBot; # Sees bottom of cell elif (cellBot <= projectedX1 and projectedX1 < cellTop and cellTop <= projectedX2): cellLengthSeen = cellTop - projectedX1; # Sees top of cell #Console.WriteLine("cell= 0 cellBot = 1,5:0.00 cellTop = 2,5:0.00 Cell length seen = 3,5:0.00", k, cellBot, cellTop, cellLengthSeen); PVreflectedIrr += cellLengthSeen * frontReflected[k]; # Add reflected radiation for this PV cell, if seen, weight by cell length seen PVreflectedIrr /= projectedX2 - projectedX1; # Reflected irradiance from PV modules (W/m2) backGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * PVreflectedIrr; # Radiation reflected from PV module surfaces onto back surface of module # End of adding reflections from PV module surfaces #Console.WriteLine(""); #if (i == 0) #Console.WriteLine("iStartGrd = 0", iStartGrd); for j in range (iStartGrd, 180): # Add ground reflected component startElvDown = (j - iStartGrd) * DTOR + elvDOWN; # Start and ending down elevations for this j loop stopElvDown = (j + 1 - iStartGrd) * DTOR + elvDOWN; projectedX2 = PcellX + np.float64(PcellY) / math.tan(startElvDown); # Projection of ElvDown to ground in +x direction (X1 and X2 opposite nomenclature for front irradiance method) projectedX1 = PcellX + PcellY / math.tan(stopElvDown); actualGroundGHI = 0.0; # Actuall ground GHI from summing array values #if (i == 0) # Console.WriteLine("j= 0 projected X1 = 1,6:0.0", j, 100 * projectedX1 / rtr); if (abs(projectedX1 - projectedX2) > 0.99 * rtr): if (rowType == "last" or rowType == "single"): # 4/19/16 No array to rear for these cases actualGroundGHI = ghi; # Use total value if projection approximates the rtr else: actualGroundGHI = aveGroundGHI; # Use average value if projection approximates the rtr else: projectedX1 = 100.0 * projectedX1 / rtr; # Normalize projections and multiply by 100 projectedX2 = 100.0 * projectedX2 / rtr; #Console.WriteLine("projectedX1 = 0 projectedX2 = 1", projectedX1, projectedX2); if ((rowType == "last" or rowType == "single") and (abs(projectedX1) > 99.0 or abs(projectedX2) > 99.0)): #4/19/2016 actualGroundGHI = ghi; # Use total value if projection > rtr for "last" or "single" else: while (projectedX1 >= 100.0 or projectedX2 >= 100.0): # Offset so array indexes are less than 100 projectedX1 -= 100.0; projectedX2 -= 100.0; while (projectedX1 < -100.0 or projectedX2 < -100.0): # Offset so array indexes are >= -100.0 12/13/2016 projectedX1 += 100.0; projectedX2 += 100.0; #Console.WriteLine("projectedX1 = 0 projectedX2 = 1", projectedX1, projectedX2); index1 = (int)(projectedX1 + 100.0) - 100; # Determine indexes for use with rearGroundGHI array and frontGroundGHI array(truncates values) index2 = (int)(projectedX2 + 100.0) - 100; # (int)(1.9) = 1 and (int)(-1.9) = -1; (int)(1.9+100) - 100 = 1 and (int)(-1.9+100) - 100 = -2 #Console.WriteLine("index1=0 index2=1", index1, index2); if (index1 == index2): if (index1 < 0): actualGroundGHI = frontGroundGHI[index1 + 100]; #actualGroundGHI = 0.0; else: actualGroundGHI = rearGroundGHI[index1]; # x projections in same groundGHI element THIS SEEMS TO ADD HICCUP 4/26/2016 *************************** #actualGroundGHI = 0.0; else: for k in range (index1, index2+1): #for (k = index1; k <= index2; k++) # Sum the irradiances on the ground if projections are in different groundGHI elements if (k == index1): if (k < 0): actualGroundGHI += frontGroundGHI[k + 100] * (k + 1.0 - projectedX1); else: actualGroundGHI += rearGroundGHI[k] * (k + 1.0 - projectedX1); elif (k == index2): if (k < 0): actualGroundGHI += frontGroundGHI[k + 100] * (projectedX2 - k); else: actualGroundGHI += rearGroundGHI[k] * (projectedX2 - k); else: if (k < 0): actualGroundGHI += frontGroundGHI[k + 100]; else: actualGroundGHI += rearGroundGHI[k]; actualGroundGHI /= projectedX2 - projectedX1; # Irradiance on ground in the 1 degree field of view #if (i == 0) # Console.WriteLine("j=0 index1=1 index2=2 projectX1=3,5:0.0 projectX2=4,5:0.0 actualGrdGHI=5,6:0.0", j, index1, index2, projectedX1, projectedX2, actualGroundGHI); # End of if looping to determine actualGroundGHI backGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * actualGroundGHI * albedo; # Add ground reflected component #Console.WriteLine("actualGroundGHI = 0,6:0.0 inputGHI = 1,6:0.0 aveArrayGroundGHI = 2,6:0.0", actualGroundGHI, dhi + dni * math.cos(zen), aveGroundGHI); # End of j loop for adding ground reflected componenet # Calculate and add direct and circumsolar irradiance components inc, tiltr, sazmr = sunIncident(0, 180-beta / DTOR, sazm / DTOR - 180, 45.0, zen, azm) # For calling PerezComp to break diffuse into components for downward facing tilt gtiAllpc, iso_dif, circ_dif, horiz_dif, grd_dif, beam = perezComp(dni, dhi, albedo, inc, tiltr, zen) # Call to get components for the tilt cellShade = pvBackSH * cellRows - i; if (cellShade > 1.0): # Fully shaded if > 1, no shade if < 0, otherwise fractionally shaded cellShade = 1.0; elif (cellShade < 0.0): cellShade = 0.0; if (cellShade < 1.0 and inc < math.pi / 2.0): # Cell not shaded entirely and inc < 90 deg cor = aOIcorrection(n2, inc); # Get AOI correction for beam and circumsolar backGTI[i] += (1.0 - cellShade) * (beam + circ_dif) * cor; # Add beam and circumsolar radiation # End of for i = 0; i < cellRows loop return backGTI, aveGroundGHI; # End of GetBackSurfaceIrradiances def getFrontSurfaceIrradiances(rowType, maxShadow, PVfrontSurface, beta, sazm, dni, dhi, C, D, albedo, zen, azm, cellRows, pvFrontSH, frontGroundGHI): """ This method calculates the AOI corrected irradiance on the front of the PV module/panel and the irradiance reflected from the the front of the PV module/panel. 11/12/2015 Added row type and MaxShadow and changed code to accommodate 4/19/2015 Parameters ---------- rowType : str Type of row: "first", "interior", "last", or "single" maxShadow Maximum shadow length projected to the front (-) or rear (+) from the front of the module row (in PV panel slope lengths), only used for `rowTypes` other than "interior" PVfrontSurface PV module front surface material type, either "glass" or "ARglass" beta Tilt from horizontal of the PV modules/panels (deg) sazm Surface azimuth of PV panels (deg) dni Direct normal irradiance (W/m2) dhi Diffuse horizontal irradiance (W/m2) C Ground clearance of PV panel (in PV panel slope lengths) D Horizontal distance between rows of PV panels (in PV panel slope lengths) albedo Ground albedo zen Sun zenith (in radians) azm Sun azimuth (in radians) pvFrontSH Decimal fraction of the front surface of the PV panel that is shaded, 0.0 to 1.0 froutGroundGHI : array of size [100] Global horizontal irradiance for each of 100 ground segments in front of the module row Returns ------- frontGTI : array of size [cellRows] AOI corrected irradiance on front side of PV module/panel, one for each cell row (W/m2) frontReflected : array of size [cellRows] Irradiance reflected from the front of the PV module/panel (W/m2) aveGroundGHI : numeric Average GHI on the ground (includes effects of shading by array) from the array frontGroundGHI[100] Notes ----- 1-degree hemispherical segment AOI correction factor for glass (index=0) and ARglass (index=1). Creates a list containing 5 lists, each of 8 items, all set to 0 """ frontGTI = [] frontReflected = [] #w, h = 2, 180; #SegAOIcor = [[0 for x in range(w)] for y in range(h)] SegAOIcor = ([[0.057563, 0.128570, 0.199651, 0.265024, 0.324661, 0.378968, 0.428391, 0.473670, 0.514788, 0.552454, 0.586857, 0.618484, 0.647076, 0.673762, 0.698029, 0.720118, 0.740726, 0.759671, 0.776946, 0.792833, 0.807374, 0.821010, 0.833534, 0.845241, 0.855524, 0.865562, 0.874567, 0.882831, 0.890769, 0.897939, 0.904373, 0.910646, 0.916297, 0.921589, 0.926512, 0.930906, 0.935179, 0.939074, 0.942627, 0.946009, 0.949096, 0.952030, 0.954555, 0.957157, 0.959669, 0.961500, 0.963481, 0.965353, 0.967387, 0.968580, 0.970311, 0.971567, 0.972948, 0.974114, 0.975264, 0.976287, 0.977213, 0.978142, 0.979057, 0.979662, 0.980460, 0.981100, 0.981771, 0.982459, 0.982837, 0.983199, 0.983956, 0.984156, 0.984682, 0.985026, 0.985364, 0.985645, 0.985954, 0.986241, 0.986484, 0.986686, 0.986895, 0.987043, 0.987287, 0.987388, 0.987541, 0.987669, 0.987755, 0.987877, 0.987903, 0.987996, 0.988022, 0.988091, 0.988104, 0.988114, 0.988114, 0.988104, 0.988091, 0.988022, 0.987996, 0.987903, 0.987877, 0.987755, 0.987669, 0.987541, 0.987388, 0.987287, 0.987043, 0.986895, 0.986686, 0.986484, 0.986240, 0.985954, 0.985645, 0.985364, 0.985020, 0.984676, 0.984156, 0.983956, 0.983199, 0.982837, 0.982459, 0.981771, 0.981100, 0.980460, 0.979662, 0.979057, 0.978142, 0.977213, 0.976287, 0.975264, 0.974114, 0.972947, 0.971567, 0.970311, 0.968580, 0.967387, 0.965353, 0.963481, 0.961501, 0.959671, 0.957157, 0.954555, 0.952030, 0.949096, 0.946009, 0.942627, 0.939074, 0.935179, 0.930906, 0.926512, 0.921589, 0.916297, 0.910646, 0.904373, 0.897939, 0.890769, 0.882831, 0.874567, 0.865562, 0.855524, 0.845241, 0.833534, 0.821010, 0.807374, 0.792833, 0.776946, 0.759671, 0.740726, 0.720118, 0.698029, 0.673762, 0.647076, 0.618484, 0.586857, 0.552454, 0.514788, 0.473670, 0.428391, 0.378968, 0.324661, 0.265024, 0.199651, 0.128570, 0.057563], [0.062742, 0.139913, 0.216842, 0.287226, 0.351055, 0.408796, 0.460966, 0.508397, 0.551116, 0.589915, 0.625035, 0.657029, 0.685667, 0.712150, 0.735991, 0.757467, 0.777313, 0.795374, 0.811669, 0.826496, 0.839932, 0.852416, 0.863766, 0.874277, 0.883399, 0.892242, 0.900084, 0.907216, 0.914023, 0.920103, 0.925504, 0.930744, 0.935424, 0.939752, 0.943788, 0.947313, 0.950768, 0.953860, 0.956675, 0.959339, 0.961755, 0.964039, 0.965984, 0.967994, 0.969968, 0.971283, 0.972800, 0.974223, 0.975784, 0.976647, 0.977953, 0.978887, 0.979922, 0.980773, 0.981637, 0.982386, 0.983068, 0.983759, 0.984436, 0.984855, 0.985453, 0.985916, 0.986417, 0.986934, 0.987182, 0.987435, 0.988022, 0.988146, 0.988537, 0.988792, 0.989043, 0.989235, 0.989470, 0.989681, 0.989857, 0.990006, 0.990159, 0.990263, 0.990455, 0.990515, 0.990636, 0.990731, 0.990787, 0.990884, 0.990900, 0.990971, 0.990986, 0.991042, 0.991048, 0.991057, 0.991057, 0.991048, 0.991042, 0.990986, 0.990971, 0.990900, 0.990884, 0.990787, 0.990731, 0.990636, 0.990515, 0.990455, 0.990263, 0.990159, 0.990006, 0.989857, 0.989681, 0.989470, 0.989235, 0.989043, 0.988787, 0.988532, 0.988146, 0.988022, 0.987435, 0.987182, 0.986934, 0.986417, 0.985916, 0.985453, 0.984855, 0.984436, 0.983759, 0.983068, 0.982386, 0.981637, 0.980773, 0.979920, 0.978887, 0.977953, 0.976647, 0.975784, 0.974223, 0.972800, 0.971284, 0.969970, 0.967994, 0.965984, 0.964039, 0.961755, 0.959339, 0.956675, 0.953860, 0.950768, 0.947313, 0.943788, 0.939752, 0.935424, 0.930744, 0.925504, 0.920103, 0.914023, 0.907216, 0.900084, 0.892242, 0.883399, 0.874277, 0.863766, 0.852416, 0.839932, 0.826496, 0.811669, 0.795374, 0.777313, 0.757467, 0.735991, 0.712150, 0.685667, 0.657029, 0.625035, 0.589915, 0.551116, 0.508397, 0.460966, 0.408796, 0.351055, 0.287226, 0.216842, 0.139913, 0.062742]]); beta = beta * DTOR # Tilt from horizontal of the PV modules/panels, in radians sazm = sazm * DTOR # Surface azimuth of PV module/panels, in radians # 1. Calculate and assign various paramters to be used for modeling irradiances iso_dif = 0.0; circ_dif = 0.0; horiz_dif = 0.0; grd_dif = 0.0; beam = 0.0; # For calling PerezComp to break diffuse into components for zero tilt (horizontal) ghi, iso_dif, circ_dif, horiz_dif, grd_dif, beam = perezComp(dni, dhi, albedo, zen, 0.0, zen) # Call to get iso_dif for horizontal surface # print "PEREZCOMP1 = " # print "ghi = ", ghi # print "iso_dif = ", iso_dif # print "circ_dif = ", circ_dif # print "horiz_dif = ", horiz_dif # print "grd_dif = ", grd_dif # print "beam = ", beam iso_sky_dif = iso_dif; # Isotropic irradiance from sky on horizontal surface, used later for determining isotropic sky component inc, tiltr, sazmr = sunIncident(0, 90.0, 180.0, 45.0, zen, azm) # For calling PerezComp to break diffuse into components for 90 degree tilt (vertical) # print "sunIncident 1." # print "inc = ", inc # print "tiltr = ", tiltr # print "sazmr = ", sazmr vti, iso_dif, circ_dif, horiz_dif, grd_dif, beam = perezComp(dni, dhi, albedo, inc, tiltr, zen) # Call to get horiz_dif for vertical surface # print "PEREZCOMP1 = " # print "vti = ", vti # print "iso_dif = ", iso_dif # print "circ_dif = ", circ_dif # print "horiz_dif = ", horiz_dif # print "grd_dif = ", grd_dif # print "beam = ", beam F2DHI = horiz_dif; # Horizon diffuse irradiance on a vertical surface, used later for determining horizon brightening irradiance component index = -99; n2 = -99.9; if (PVfrontSurface == "glass"): index = 0; # Index to use with 1-degree hemispherical segment AOI correction factor array n2 = 1.526; # Index of refraction for glass elif (PVfrontSurface == "ARglass"): index = 1; # Index to use with 1-degree hemispherical segment AOI correction factor array n2 = 1.300; # Index of refraction for ARglass else: raise Exception("Incorrect text input for PVfrontSurface. Must be glass or ARglass.") Ro = math.pow((n2 - 1.0) / (n2 + 1.0), 2.0); # Reflectance at normal incidence, Duffie and Beckman p217 aveGroundGHI = 0.0; # Average GHI on ground under PV array for cases when x projection exceed 2*rtr for i in range (0,100): aveGroundGHI += frontGroundGHI[i] / 100.0; # Calculate x,y coordinates of bottom and top edges of PV row in front of desired PV row so that portions of sky and ground viewed by the # PV cell may be determined. Origin of x-y axis is the ground pobelow the lower front edge of the desired PV row. The row in front of # the desired row is in the negative x direction. h = math.sin(beta); # Vertical height of sloped PV panel (in PV panel slope lengths) x1 = math.cos(beta); # Horizontal distance from front of panel to rear of panel (in PV panel slope lengths) rtr = D + x1; # Row-to-row distance (in PV panel slope lengths) PbotX = -rtr; # x value for poon bottom egde of PV module/panel of row in front of (in PV panel slope lengths) PbotY = C; # y value for poon bottom egde of PV module/panel of row in front of (in PV panel slope lengths) PtopX = -D; # x value for poon top egde of PV module/panel of row in front of (in PV panel slope lengths) PtopY = h + C; # y value for poon top egde of PV module/panel of row in front of (in PV panel slope lengths) # 2. Calculate diffuse and direct component irradiances for each cell row for i in range (0, cellRows): # Calculate diffuse irradiances and reflected amounts for each cell row over it's field of view of 180 degrees, # beginning with the angle providing the upper most view of the sky (j=0) PcellX = x1 * (i + 0.5) / (cellRows); # x value for location of PV cell PcellY = C + h * (i + 0.5) / (cellRows); # y value for location of PV cell elvUP = math.atan((PtopY - PcellY) / (PcellX - PtopX)); # Elevation angle up from PV cell to top of PV module/panel, radians elvDOWN = math.atan((PcellY - PbotY) / (PcellX - PbotX)); # Elevation angle down from PV cell to bottom of PV module/panel, radians if (rowType == "first" or rowType == "single"): # 4/19/16 No array in front for these cases elvUP = 0.0; elvDOWN = 0.0; #Console.WriteLine("ElvUp = 0", elvUP / DTOR); #if (i == 0) # Console.WriteLine("ElvDown = 0", elvDOWN / DTOR); if math.isnan(beta): print( "Beta is Nan") if math.isnan(elvUP): print( "elvUP is Nan") if math.isnan((math.pi - beta - elvUP) / DTOR): print( "division is Nan") iStopIso = int(round(np.float64((math.pi - beta - elvUP)) / DTOR)) # Last whole degree in arc range that sees sky, first is 0 #Console.WriteLine("iStopIso = 0", iStopIso); iHorBright = int(round(max(0.0, 6.0 - elvUP / DTOR))); # Number of whole degrees for which horizon brightening occurs iStartGrd = int(round((math.pi - beta + elvDOWN) / DTOR)); # First whole degree in arc range that sees ground, last is 180 # print "iStopIso = ", iStopIso # print "iHorBright = ", iHorBright # print "iStartGrd = ", iStartGrd frontGTI.append(0.0) # Initialtize front GTI frontReflected.append(0.0); # Initialize reflected amount from front for j in range (0, iStopIso): # Add sky diffuse component and horizon brightening if present #for (j = 0; j < iStopIso; j++) frontGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * iso_sky_dif; # Sky radiation frontReflected[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * iso_sky_dif * (1.0 - SegAOIcor[index][j] * (1.0 - Ro)); # Reflected radiation from module if ((iStopIso - j) <= iHorBright): # Add horizon brightening term if seen frontGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * F2DHI / 0.052264; # 0.052246 = 0.5 * [cos(84) - cos(90)] frontReflected[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * (F2DHI / 0.052264) * (1.0 - SegAOIcor[index][j] * (1.0 - Ro)); # Reflected radiation from module #if (i == 0) # Console.WriteLine("iStartGrd = 0", iStartGrd); for j in range (iStartGrd, 180): # Add ground reflected component #(j = iStartGrd; j < 180; j++) startElvDown = (j - iStartGrd) * DTOR + elvDOWN; # Start and ending down elevations for this j loop stopElvDown = (j + 1 - iStartGrd) * DTOR + elvDOWN; projectedX1 = PcellX - np.float64(PcellY) / math.tan(startElvDown); # Projection of ElvDown to ground in -x direction projectedX2 = PcellX - PcellY / math.tan(stopElvDown); actualGroundGHI = 0.0; # Actuall ground GHI from summing array values #if (i == 0) # Console.WriteLine("j= 0 projected X1 = 1,6:0.0", j, 100 * projectedX1 / rtr); if (abs(projectedX1 - projectedX2) > 0.99 * rtr): if (rowType == "first" or rowType == "single"): # 4/19/16 No array in front for these cases actualGroundGHI = ghi; # Use total value if projection approximates the rtr else: actualGroundGHI = aveGroundGHI; # Use average value if projection approximates the rtr else: projectedX1 = 100.0 * projectedX1 / rtr; # Normalize projections and multiply by 100 projectedX2 = 100.0 * projectedX2 / rtr; if ((rowType == "first" or rowType == "single") and (abs(projectedX1) > rtr or abs(projectedX2) > rtr)): #4/19/2016 actualGroundGHI = ghi; # Use total value if projection > rtr for "first" or "single" else: while (projectedX1 < 0.0 or projectedX2 < 0.0): # Offset so array indexes are positive projectedX1 += 100.0; projectedX2 += 100.0; index1 = int(projectedX1); # Determine indexes for use with groundGHI array (truncates values) index2 = int(projectedX2); if (index1 == index2): actualGroundGHI = frontGroundGHI[index1]; # x projections in same groundGHI element else: for k in range (index1, index2+1): # Sum the irradiances on the ground if projections are in different groundGHI elements #for (k = index1; k <= index2; k++) #Console.WriteLine("index1=0 index2=1", index1,index2); if (k == index1): actualGroundGHI += frontGroundGHI[k] * (k + 1.0 - projectedX1); elif (k == index2): if (k < 100): actualGroundGHI += frontGroundGHI[k] * (projectedX2 - k); else: actualGroundGHI += frontGroundGHI[k - 100] * (projectedX2 - k); else: if (k < 100): actualGroundGHI += frontGroundGHI[k]; else: actualGroundGHI += frontGroundGHI[k - 100]; actualGroundGHI /= projectedX2 - projectedX1; # Irradiance on ground in the 1 degree field of view #if (i == 0) # Console.WriteLine("j=0 index1=1 index2=2 projectX1=3,5:0.0 projectX2=4,5:0.0 actualGrdGHI=5,6:0.0", j, index1, index2, projectedX1, projectedX2, actualGroundGHI); frontGTI[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * SegAOIcor[index][j] * actualGroundGHI * albedo; # Add ground reflected component frontReflected[i] += 0.5 * (math.cos(j * DTOR) - math.cos((j + 1) * DTOR)) * actualGroundGHI * albedo * (1.0 - SegAOIcor[index][j] * (1.0 - Ro)); # Reflected ground radiation from module #Console.WriteLine("actualGroundGHI = 0,6:0.0 inputGHI = 1,6:0.0 aveArrayGroundGHI = 2,6:0.0", actualGroundGHI, dhi + dni * math.cos(zen), aveGroundGHI); # End of j loop for adding ground reflected componenet # Calculate and add direct and circumsolar irradiance components inc, tiltr, sazmr = sunIncident(0, beta / DTOR, sazm / DTOR, 45.0, zen, azm) # For calling PerezComp to break diffuse into components for 90 degree tilt (vertical) # print "sunIncident 2." # print "inc = ", inc # print "tiltr = ", tiltr # print "sazmr = ", sazmr # print " INCIDENT REALY NEEDED for AOI ", inc gtiAllpc, iso_dif, circ_dif, horiz_dif, grd_dif, beam = perezComp(dni, dhi, albedo, inc, tiltr, zen) # Call to get components for the tilt # print "PEREZCOMP 2 = " # print "gtiAllpc = ", vti # print "iso_dif = ", iso_dif # print "circ_dif = ", circ_dif # print "horiz_dif = ", horiz_dif # print "grd_dif = ", grd_dif # print "beam = ", beam cellShade = pvFrontSH * cellRows - i; if (cellShade > 1.0): # Fully shaded if > 1, no shade if < 0, otherwise fractionally shaded cellShade = 1.0; elif (cellShade < 0.0): cellShade = 0.0; if (cellShade < 1.0 and inc < math.pi / 2.0): # Cell not shaded entirely and inc < 90 deg cor = aOIcorrection(n2, inc); # Get AOI correction for beam and circumsolar frontGTI[i] += (1.0 - cellShade) * (beam + circ_dif) * cor; # Add beam and circumsolar radiation #frontReflected[i] += (1.0 - cellShade) * (beam + circ_dif) * (1.0 - cor * (1.0 - Ro)); # Reflected beam and circumsolar radiation from module # End of for i = 0; i < cellRows loop return aveGroundGHI, frontGTI, frontReflected; # End of GetFrontSurfaceIrradiances def getGroundShadeFactors(rowType, beta, C, D, elv, azm, sazm): """ This method determines if the ground is shaded from direct beam radiation for points on the ground from the leading edge of one row of PV panels to the leading edge of the next row of PV panels behind it. This row-to-row dimension is divided into 100 ground segments and a ground shade factor is returned for each ground segment, with values of 1 for shaded segments and values of 0 for non shaded segments. The fractional amounts of shading of the front and back surfaces of the PV panel are also returned. 8/20/2015 4/18/2016 - Modified to account for different row types. Because the ground factors may now be different depending on row, they are calculated for the row-to-row dimension to the rear of the leading module edge and to the front of the leading edge. Also returned is the maximum shadow length projected to the front or rear from the front of the module row Parameters ---------- rowType : str "first", "interior", "last", or "single" beta Tilt from horizontal of the PV modules/panels (deg) C Ground clearance of PV panel (in PV panel slope lengths) D Horizontal distance between rows of PV panels (in PV panel slope lengths) elv Sun elevation (in radians) azm Sun azimuth (in radians) sazm Surface azimuth of PV panels (deg) Returns ------- pvFrontSH : numeric Decimal fraction of the front surface of the PV panel that is shaded, 0.0 to 1.0 pvBackSH : numeric Decimal fraction of the back surface of the PV panel that is shaded, 0.0 to 1.0 rearGroundSH : array of size [100] Ground shade factors for ground segments to the rear, 0 = not shaded, 1 = shaded frontGroundSH : array of size [100] Ground shade factors for ground segments to the front, 0 = not shaded, 1 = shaded maxShadow : numeric Maximum shadow length projected to the front(-) or rear (+) from the front of the module row (in PV panel slope lengths), only used later for rowTypes other than "interior" """ rearGroundSH = [] frontGroundSH = [] beta = beta * DTOR # Tilt from horizontal of the PV modules/panels, in radians sazm = sazm * DTOR # Surface azimuth of PV module/pamels, in radians h = math.sin(beta); # Vertical height of sloped PV panel (in PV panel slope lengths) x1 = math.cos(beta); # Horizontal distance from front of panel to rear of panel (in PV panel slope lengths) rtr = D + x1; # Row-to-row distance (in PV panel slope lengths) # Divide the row-to-row spacing into 100 intervals for calculating ground shade factors delta = rtr / 100.0; x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals Lh = (h / math.tan(elv)) * math.cos(sazm - azm); # Horizontal length of shadow perpindicular to row from top of module to bottom of module Lhc = ((h + C) / math.tan(elv)) * math.cos(sazm - azm); # Horizontal length of shadow perpindicular to row from top of module to ground level Lc = (C / math.tan(elv)) * math.cos(sazm - azm); # Horizontal length of shadow perpindicular to row from bottom of module to ground level ss1 = 0.0; se1 = 0.0; ss2 = 0.0; se2 = 0.0; # Initialize shading start (s) and end (e) to zeros for two potential shading segments pvFrontSH = 0.0; pvBackSH = 0.0; if (rowType == "interior"): if (Lh > D): # Front side of PV module partially shaded, back completely shaded, ground completely shaded pvFrontSH = (Lh - D) / (Lh + x1); pvBackSH = 1.0; ss1 = 0.0; # Ground shaded from 0.0 to rtr se1 = rtr; elif (Lh < -(rtr + x1)): # Back side of PV module partially shaded, front completely shaded, ground completely shaded pvFrontSH = 1.0; pvBackSH = (Lh + rtr + x1) / (Lh + x1); ss1 = 0.0; # Ground shaded from 0.0 to rtr se1 = rtr; else: # Ground is partially shaded (I assume) if (Lhc >= 0.0): # Shadow to rear of row, module front unshaded, back shaded pvFrontSH = 0.0; pvBackSH = 1.0; Ss = Lc; # Shadow starts at Lc Se = Lhc + x1; # Shadow ends here while (Ss > rtr): Ss -= rtr; # Put shadow in correct rtr space if needed Se -= rtr; ss1 = Ss; se1 = Se; if (se1 > rtr): # then need to use two shade areas se1 = rtr; ss2 = 0.0; se2 = Se - rtr; if (se2 > ss1): # This would mean ground completely shaded, does this occur? ss1 = 0.0; # Ground shaded from 0.0 to rtr se1 = rtr; else: # Shadow to front of row, either front or back might be shaded, depending on tilt and other factors Ss = 0.0; # Shadow starts at Lc, initialize Se = 0.0; # Shadow ends here, initialize if (Lc < Lhc + x1): pvFrontSH = 0.0; pvBackSH = 1.0; Ss = Lc; # Shadow starts at Lc Se = Lhc + x1; # Shadow ends here else: pvFrontSH = 1.0; pvBackSH = 0.0; Ss = Lhc + x1; # Shadow starts at Lhc + x1 Se = Lc; # Shadow ends here while (Ss < 0.0): Ss += rtr; # Put shadow in correct rtr space if needed Se += rtr; ss1 = Ss; se1 = Se; if (se1 > rtr): # then need to use two shade areas se1 = rtr; ss2 = 0.0; se2 = Se - rtr; if (se2 > ss1): # This would mean ground completely shaded, does this occur? ss1 = 0.0; # Ground shaded from 0.0 to rtr se1 = rtr; # End of if (Lh > D) else branching delta = rtr / 100.0; x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals #for (i = 0; i <= 99; i++) for i in range(0,100): x += delta; #if ((x >= ss1 && x < se1) || (x >= ss2 && x < se2)): if ((x >= ss1 and x < se1) or (x >= ss2 and x < se2)): rearGroundSH.append(1); # x within a shaded interval, set groundSH to 1 to indicate shaded frontGroundSH.append(1); # same for both front and rear else: rearGroundSH.append(0); # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny frontGroundSH.append(0); # same for both front and rear #Console.WriteLine("x = 0,6:0.0000 groundSH = 1", x, groundSH[i]); # End of if row type == "interior" elif (rowType == "first"): if (Lh > 0.0): # Sun is on front side of PV module pvFrontSH = 0.0; pvBackSH = 1.0; ss1 = Lc; # Ground shaded from shadow of lower edge se1 = x1 + Lhc; # to shadow of upper edge # End of if sun on front side of PV module elif (Lh < -(rtr + x1)): # Back side of PV module partially shaded from row to rear, front completely shaded, ground completely shaded pvFrontSH = 1.0; pvBackSH = (Lh + rtr + x1) / (Lh + x1); ss1 = -rtr; # Ground shaded from -rtr to rtr se1 = rtr; # End of if back side of PV module partially shaded, front completely shaded, ground completely shaded else: # Shadow to frontside of row, either front or back might be shaded, depending on tilt and other factors if (Lc < Lhc + x1): pvFrontSH = 0.0; pvBackSH = 1.0; ss1 = Lc; # Shadow starts at Lc se1 = Lhc + x1; # Shadow ends here else: pvFrontSH = 1.0; pvBackSH = 0.0; ss1 = Lhc + x1; # Shadow starts at Lhc + x1 se1 = Lc; # Shadow ends here # End of shadow to front of row delta = rtr / 100.0; x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals for i in range(0,100): x += delta; if (x >= ss1 and x < se1): rearGroundSH.append(1) # x within a shaded interval, set groundSH to 1 to indicate shaded else: rearGroundSH.append(0) # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny x = -rtr - delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals for front interval for i in range(0,100): x += delta; if (x >= ss1 and x < se1): frontGroundSH.append(1) # x within a shaded interval, set groundSH to 1 to indicate shaded else: frontGroundSH.append(0) # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny # End of if row type == "first" elif (rowType == "last"): if (Lh > D): # Front side of PV module partially shaded, back completely shaded, ground completely shaded pvFrontSH = (Lh - D) / (Lh + x1); pvBackSH = 1.0; ss1 = -rtr; # Ground shaded from -rtr to rtr se1 = rtr; else: # Shadow to frontside of row, either front or back might be shaded, depending on tilt and other factors if (Lc < Lhc + x1): pvFrontSH = 0.0; pvBackSH = 1.0; ss1 = Lc; # Shadow starts at Lc se1 = Lhc + x1; # Shadow ends here else: pvFrontSH = 1.0; pvBackSH = 0.0; ss1 = Lhc + x1; # Shadow starts at Lhc + x1 se1 = Lc; # Shadow ends here # End of shadow to front of row delta = rtr / 100.0; x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals for i in range(0,100): x += delta; if (x >= ss1 and x < se1): rearGroundSH.append(1); # x within a shaded interval, set groundSH to 1 to indicate shaded else: rearGroundSH.append(0); # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny x = -rtr - delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals for front interval for i in range(0,100): x += delta; if (x >= ss1 and x < se1): frontGroundSH.append(1); # x within a shaded interval, set groundSH to 1 to indicate shaded else: frontGroundSH.append(0); # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny # End of if row type == "last" elif (rowType == "single"): if (Lh > 0.0): # Shadow to the rear pvFrontSH = 0.0; pvBackSH = 1.0; ss1 = Lc; # Ground shaded from shadow of lower edge se1 = x1 + Lhc; # to shadow of upper edge # End of if sun on front side of PV module else: # Shadow to frontside of row, either front or back might be shaded, depending on tilt and other factors if (Lc < Lhc + x1): pvFrontSH = 0.0; pvBackSH = 1.0; ss1 = Lc; # Shadow starts at Lc se1 = Lhc + x1; # Shadow ends here else: pvFrontSH = 1.0; pvBackSH = 0.0; ss1 = Lhc + x1; # Shadow starts at Lhc + x1 se1 = Lc; # Shadow ends here # End of shadow to front of row delta = rtr / 100.0; x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals for i in range(0,100): x += delta; if (x >= ss1 and x < se1): rearGroundSH.append(1); # x within a shaded interval, set groundSH to 1 to indicate shaded else: rearGroundSH.append(0); # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny x = -rtr - delta / 2.0; # Initialize horizontal dimension x to provide midpoof intervals for front interval for i in range(0,100): x += delta; if (x >= ss1 and x < se1): frontGroundSH.append(1); # x within a shaded interval, set groundSH to 1 to indicate shaded else: frontGroundSH.append(0); # x not within a shaded interval, set groundSH to 0 to indicated not shaded, i.e. sunny # End of if row type == "single" else: print ("ERROR: Incorrect row type not passed to function GetGroundShadedFactors "); if (abs(ss1) > abs(se1)): # Maximum shadow length projected from the front of the PV module row maxShadow = ss1; else: maxShadow = se1; #Console.WriteLine("elv = 0,6:0.00 azm = 1,6:0.00 sazm = 2,6:0.00", elv * 180.0 / math.pi, azm * 180.0 / math.pi, sazm * 180.0 / math.pi); #Console.WriteLine("ss1 = 0,6:0.0000 se1 = 1,6:0.0000 ss2 = 2,6:0.0000 se2 = 3,6:0.0000 rtr = 4,6:0.000", ss1, se1, ss2, se2, rtr); #Console.WriteLine("pvFrontSH = 0,6:0.00 pvBackSH = 1,6:0.00", pvFrontSH, pvBackSH); # End of GetGroundShadedFactors #print "rearGroundSH", rearGroundSH[0] return pvFrontSH, pvBackSH, maxShadow, rearGroundSH, frontGroundSH; # End of getGroundShadeFactors def getSkyConfigurationFactors(rowType, beta, C, D): """ This method determines the sky configuration factors for points on the ground from the leading edge of one row of PV panels to the leading edge of the next row of PV panels behind it. This row-to-row dimension is divided into 100 ground segments and a sky configuration factor is returned for each ground segment. The sky configuration factor represents the fraction of the isotropic diffuse sky radiation (unobstructed) that is present on the ground when partially obstructed by the rows of PV panels. The equations follow that on pages in the notebook dated 8/12/2015. 8/20/2015 4/15/2016 Modifed for calculations other than just the interior rows. Row type is identified with the string `rowType`, with the possilbe values: * first = first row of the array * interior = interior row of array * last = last row of the array * single = a single row array Because the sky configuration factors may now be different depending on row, they are calculated for the row-to-row dimension to the rear of the leading module edge and to the front of the leading edge. Parameters ---------- rowType : str "first", "interior", "last", or "single" beta : float Tilt from horizontal of the PV modules/panels (deg) C : float Ground clearance of PV panel (in PV module/panel slope lengths) D : float Horizontal distance between rows of PV panels (in PV module/panel slope lengths) Returns ------- rearSkyConfigFactors : array of size [100] Sky configuration factors to rear of leading PVmodule edge (decimal fraction) frontSkyConfigFactors : array of size [100] Sky configuration factors to rear of leading PVmodule edge (decimal fraction) Notes ----- The horizontal distance between rows, `D`, is from the back edge of one row to the front edge of the next, and it is not the row-to-row spacing. """ rearSkyConfigFactors = [] frontSkyConfigFactors = [] # Tilt from horizontal of the PV modules/panels, in radians beta = beta * DTOR # Vertical height of sloped PV panel (in PV panel slope lengths) h = math.sin(beta) # Horizontal distance from front of panel to rear of panel (in PV panel # slope lengths) x1 = math.cos(beta) rtr = D + x1 # Row-to-row distance (in PV panel slope lengths) # Forced fix for case of C = 0 # FIXME: for some reason the Config Factors go from 1 to 2 and not 0 to 1. # TODO: investigate why this is happening in the code. if C==0: C=0.0000000001 if C < 0: LOGGER.error( "Height is below ground level. Function GetSkyConfigurationFactors" " will continue but results might be unreliable") # Divide the row-to-row spacing into 100 intervals and calculate # configuration factors delta = rtr / 100.0 if (rowType == "interior"): # Initialize horizontal dimension x to provide midpoint of intervals x = -delta / 2.0 for i in range(0,100): x += delta # <--rtr=x1+D--><--rtr=x1+D--><--rtr=x1+D--> # |\ |\ |\ |\ # | \ ` | \ | \ /| \ # h \ ` h \ h \ / h \ # | \ ` | \ | \ / | \ # |_x1_\____D__`|_x1_\____D___|_x1_\_/_D____|_x1_\_ # | ` <------x-----/| # C ` / # | angA ` / angB # *------------------------`-/--------------------- # x # use ATAN2: 4-quadrant tangent instead of ATAN # check 2 rows away angA = math.atan2(h + C, (2.0 * rtr + x1 - x)) angB = math.atan2(C, (2.0 * rtr - x)) beta1 = max(angA, angB) # check 1 rows away angA = math.atan2(h + C, (rtr + x1 - x)) angB = math.atan2(C, (rtr - x)) beta2 = min(angA, angB) # check 0 rows away beta3 = max(angA, angB) beta4 = math.atan2(h + C, (x1 - x)) beta5 = math.atan2(C, (-x)) beta6 = math.atan2(h + C, (-D - x)) sky1 =0; sky2 =0; sky3 =0 if (beta2 > beta1): sky1 = 0.5 * (math.cos(beta1) - math.cos(beta2)) if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)) if (beta6 > beta5): sky3 = 0.5 * (math.cos(beta5) - math.cos(beta6)) skyAll = sky1 + sky2 + sky3 # Save as arrays of values, same for both to the rear and front rearSkyConfigFactors.append(skyAll) frontSkyConfigFactors.append(skyAll) # End of if "interior" elif (rowType == "first"): # RearSkyConfigFactors don't have a row in front, calculation of sky3 # changed, beta6 = 180 degrees x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoint of intervals for i in range(0,100): x += delta; angA = math.atan((h + C) / (2.0 * rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (2.0 * rtr - x)); if (angB < 0.0): angB += math.pi; beta1 = max(angA, angB); angA = math.atan((h + C) / (rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (rtr - x)); if (angB < 0.0): angB += math.pi; beta2 = min(angA, angB); beta3 = max(angA, angB); beta4 = math.atan((h + C) / (x1 - x)); if (beta4 < 0.0): beta4 += math.pi; beta5 = math.atan(C / (-x)); if (beta5 < 0.0): beta5 += math.pi; beta6 = math.pi; sky1 = 0.0; sky2 = 0.0; sky3 = 0.0; if (beta2 > beta1): sky1 = 0.5 * (math.cos(beta1) - math.cos(beta2)); if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)); if (beta6 > beta5): sky3 = 0.5 * (math.cos(beta5) - math.cos(beta6)); skyAll = sky1 + sky2 + sky3; rearSkyConfigFactors.append(skyAll); # Save as arrays of values #Console.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); #sw.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); # frontSkyConfigFactors don't have a row in front, calculation of sky3 included as part of revised sky2, # beta 4 set to 180 degrees x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoint of intervals for i in range(0,100): x += delta; angA = math.atan((h + C) / (2.0 * rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (2.0 * rtr - x)); if (angB < 0.0): angB += math.pi; beta1 = max(angA, angB); angA = math.atan((h + C) / (rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (rtr - x)); if (angB < 0.0): angB += math.pi; beta2 = min(angA, angB); beta3 = max(angA, angB); beta4 = math.pi; sky1 = 0.0; sky2 = 0.0; if (beta2 > beta1): sky1 = 0.5 * (math.cos(beta1) - math.cos(beta2)); if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)); skyAll = sky1 + sky2; frontSkyConfigFactors.append(skyAll); # Save as arrays of values #Console.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); #sw.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); # End of if "first" elif (rowType == "last"): # RearSkyConfigFactors don't have a row to the rear, combine sky1 into sky 2, set beta 3 = 0.0 x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoint of intervals for i in range(0,100): x += delta; beta3 = 0.0; beta4 = math.atan((h + C) / (x1 - x)); if (beta4 < 0.0): beta4 += math.pi; beta5 = math.atan(C / (-x)); if (beta5 < 0.0): beta5 += math.pi; beta6 = math.atan((h + C) / (-D - x)); if (beta6 < 0.0): beta6 += math.pi; sky2 = 0.0; sky3 = 0.0; if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)); if (beta6 > beta5): sky3 = 0.5 * (math.cos(beta5) - math.cos(beta6)); skyAll = sky2 + sky3; rearSkyConfigFactors.append(skyAll); # Save as arrays of values #Console.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); #sw.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); # FrontSkyConfigFactors have beta1 = 0.0 x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoint of intervals for i in range(0,100): x += delta; angA = math.atan((h + C) / (2.0 * rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (2.0 * rtr - x)); if (angB < 0.0): angB += math.pi; beta1 = max(angA, angB); beta1 = 0.0; angA = math.atan((h + C) / (rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (rtr - x)); if (angB < 0.0): angB += math.pi; beta2 = min(angA, angB); beta3 = max(angA, angB); beta4 = math.atan((h + C) / (x1 - x)); if (beta4 < 0.0): beta4 += math.pi; beta5 = math.atan(C / (-x)); if (beta5 < 0.0): beta5 += math.pi; beta6 = math.atan((h + C) / (-D - x)); if (beta6 < 0.0): beta6 += math.pi; sky1 = 0.0; sky2 = 0.0; sky3 = 0.0; if (beta2 > beta1): sky1 = 0.5 * (math.cos(beta1) - math.cos(beta2)); if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)); if (beta6 > beta5): sky3 = 0.5 * (math.cos(beta5) - math.cos(beta6)); skyAll = sky1 + sky2 + sky3; frontSkyConfigFactors.append(skyAll); # Save as arrays of values, #Console.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); #sw.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); # End of if "last" row elif (rowType == "single"): # RearSkyConfigFactors don't have a row to the rear ir front, combine sky1 into sky 2, set beta 3 = 0.0, # for sky3, beta6 = 180.0. x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoint of intervals for i in range(0,100): x += delta; beta3 = 0.0; beta4 = math.atan((h + C) / (x1 - x)); if (beta4 < 0.0): beta4 += math.pi; beta5 = math.atan(C / (-x)); if (beta5 < 0.0): beta5 += math.pi; beta6 = math.pi; sky2 = 0.0; sky3 = 0.0; if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)); if (beta6 > beta5): sky3 = 0.5 * (math.cos(beta5) - math.cos(beta6)); skyAll = sky2 + sky3; rearSkyConfigFactors.append(skyAll); # Save as arrays of values #Console.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); #sw.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); # FrontSkyConfigFactors have only a row to the rear, combine sky3 into sky2, set beta1 = 0, beta4 = 180 x = -delta / 2.0; # Initialize horizontal dimension x to provide midpoint of intervals for i in range(0,100): x += delta; angA = math.atan((h + C) / (2.0 * rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (2.0 * rtr - x)); if (angB < 0.0): angB += math.pi; beta1 = max(angA, angB); beta1 = 0.0; angA = math.atan((h + C) / (rtr + x1 - x)); if (angA < 0.0): angA += math.pi; angB = math.atan(C / (rtr - x)); if (angB < 0.0): angB += math.pi; beta2 = min(angA, angB); beta3 = max(angA, angB); beta4 = math.pi; sky1 = 0.0; sky2 = 0.0; if (beta2 > beta1): sky1 = 0.5 * (math.cos(beta1) - math.cos(beta2)); if (beta4 > beta3): sky2 = 0.5 * (math.cos(beta3) - math.cos(beta4)); skyAll = sky1 + sky2; frontSkyConfigFactors.append(skyAll); # Save as arrays of values #Console.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); #sw.WriteLine("0,5:0.000,1,5:0.000,2,5:0.000,3,5:0.000,4,5:0.000", x, sky1, sky2, sky3, skyAll); # End of if "single" else: print("ERROR: Incorrect row type not passed to function GetSkyConfigurationFactors "); return rearSkyConfigFactors, frontSkyConfigFactors; # End of GetSkyConfigurationFactors def rowSpacing(beta, sazm, lat, lng, tz, hour, minute): """ This method determines the horizontal distance D between rows of PV panels (in PV module/panel slope lengths) for no shading on December 21 (north hemisphere) June 21 (south hemisphere) for a module tilt angle beta and surface azimuth sazm, and a given latitude, longitude, and time zone and for the time passed to the method (typically 9 am). (Ref: the row-to-row spacing is then ``D + cos(beta)``) 8/21/2015 Parameters ---------- beta : double Tilt from horizontal of the PV modules/panels (deg) sazm : double Surface azimuth of the PV modules/panels (deg) lat : double Site latitude (deg) lng : double Site longitude (deg) tz : double Time zone (hrs) hour : int hour for no shading criteria minute: double minute for no shading Returns ------- D : numeric Horizontal distance between rows of PV panels (in PV panel slope lengths) """ beta = beta * DTOR # Tilt from horizontal of the PV modules/panels, in radians sazm = sazm * DTOR # Surface azimuth of PV module/pamels, in radians if lat >= 0: [azm, zen, elv, dec, sunrise, sunset, Eo, tst] = solarPos (2014, 12, 21, hour, minute, lat, lng, tz) else: [azm, zen, elv, dec, sunrise, sunset, Eo, tst] = solarPos (2014, 6, 21, hour, minute, lat, lng, tz) tst = 8.877 ##DLL Forced value minute -= 60.0 * (tst - hour); # Adjust minute so sun position is calculated for a tst equal to the # time passed to the function if lat >= 0: [azm, zen, elv, dec, sunrise, sunset, Eo, tst] = solarPos(2014, 12, 21, hour, minute, lat, lng, tz) else: [azm, zen, elv, dec, sunrise, sunset, Eo, tst] = solarPos(2014, 6, 21, hour, minute, lat, lng, tz) # Console.WriteLine("tst = {0} azm = {1} elv = {2}", tst, azm * 180.0 / Math.PI, elv * 180.0 / Math.PI); D = math.cos(sazm - azm) * math.sin(beta) / math.tan(elv) return D # End of RowSpacing def trackingBFvaluescalculator(beta, hub_height, r2r): ''' 1-axis tracking helper file Parameters ---------- beta : float Tilt from horizontal of the PV modules/panels, in radians hub_height : float tracker hub height r2r : float Row-to-row distance (in PV panel slope lengths) Returns ------- C : float ground clearance of PV panel D : float row-to-row distance (each in PV panel slope lengths) ''' # Created on Tue Jun 13 08:01:56 2017 # @author: sayala beta = beta * DTOR # Tilt from horizontal of the PV modules/panels, in radians x1 = math.cos(beta); # Horizontal distance from front of panel to rear of panel (in PV panel slope lengths) #rtr = D + x1; # Row-to-row distance (in PV panel slope lengths) D = r2r - x1; # Calculates D DistanceBetweenRows(panel slope lengths) hm = 0.5*math.sin(beta); # vertical distance from bottom of panel to top of panel (in PV panel slope lengths) #C = 0.5+Cv-hm # Ground clearance of PV panel (in PV panel slope lengths). C = hub_height - hm #Adding a 0.5 for half a panel slope length, since it is assumed the panel is rotating around its middle axis return C, D
50.374441
203
0.534692
10,227
78,836
4.110003
0.083896
0.006424
0.007137
0.012324
0.797112
0.775081
0.752195
0.72819
0.711489
0.691933
0
0.149293
0.362258
78,836
1,564
204
50.40665
0.686735
0.430895
0
0.692
0
0
0.013246
0.001708
0
0
0
0.001279
0
1
0.008
false
0.002667
0.006667
0
0.022667
0.008
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
db3fb84bca4d1b9ce63dca5f602d76eb7650bd3f
106
py
Python
lib/loss/__init__.py
kennethwdk/PINet
3a0abbd653146c56e39612384891c94c3fb49b35
[ "MIT" ]
10
2021-12-22T11:31:53.000Z
2022-01-18T11:52:17.000Z
lib/loss/__init__.py
kennethwdk/PINet
3a0abbd653146c56e39612384891c94c3fb49b35
[ "MIT" ]
null
null
null
lib/loss/__init__.py
kennethwdk/PINet
3a0abbd653146c56e39612384891c94c3fb49b35
[ "MIT" ]
null
null
null
from .heatmaploss import HeatmapLoss from .offsetloss import OffsetLoss from .refineloss import RefineLoss
35.333333
36
0.867925
12
106
7.666667
0.416667
0
0
0
0
0
0
0
0
0
0
0
0.103774
106
3
37
35.333333
0.968421
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
db555bcdcf43aa3bbda4391fd627c19482dc0997
68,250
py
Python
dalme_app/migrations/0001_initial.py
DALME/dalme
46f9a0011fdb75c5098b552104fc73b1062e16e9
[ "BSD-3-Clause" ]
6
2019-05-07T01:06:04.000Z
2021-02-19T20:45:09.000Z
dalme_app/migrations/0001_initial.py
DALME/dalme
46f9a0011fdb75c5098b552104fc73b1062e16e9
[ "BSD-3-Clause" ]
23
2018-09-14T18:01:42.000Z
2021-12-29T17:25:18.000Z
dalme_app/migrations/0001_initial.py
DALME/dalme
46f9a0011fdb75c5098b552104fc73b1062e16e9
[ "BSD-3-Clause" ]
1
2020-02-10T16:20:57.000Z
2020-02-10T16:20:57.000Z
# Generated by Django 3.1.2 on 2020-11-29 13:25 import dalme_app.models._templates from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_currentuser.middleware import uuid import wagtail.search.index class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('auth', '0012_alter_user_first_name_max_length'), ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='rs_collection', fields=[ ('ref', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=100, null=True)), ('user', models.IntegerField(null=True)), ('created', models.DateTimeField(blank=True, null=True)), ('public', models.IntegerField(default='0')), ('theme', models.CharField(max_length=100, null=True)), ('theme2', models.CharField(max_length=100, null=True)), ('theme3', models.CharField(max_length=100, null=True)), ('allow_changes', models.IntegerField(default='0')), ('cant_delete', models.IntegerField(default='0')), ('keywords', models.TextField()), ('savedsearch', models.IntegerField(null=True)), ('home_page_publish', models.IntegerField(null=True)), ('home_page_text', models.TextField()), ('home_page_image', models.IntegerField(null=True)), ('session_id', models.IntegerField(null=True)), ('theme4', models.CharField(max_length=100, null=True)), ('theme5', models.CharField(max_length=100, null=True)), ('theme6', models.CharField(max_length=100, null=True)), ('theme7', models.CharField(max_length=100, null=True)), ('theme8', models.CharField(max_length=100, null=True)), ('theme9', models.CharField(max_length=100, null=True)), ('theme10', models.CharField(max_length=100, null=True)), ('theme11', models.CharField(max_length=100, null=True)), ('theme12', models.CharField(max_length=100, null=True)), ('theme13', models.CharField(max_length=100, null=True)), ('theme14', models.CharField(max_length=100, null=True)), ('theme15', models.CharField(max_length=100, null=True)), ('theme16', models.CharField(max_length=100, null=True)), ('theme17', models.CharField(max_length=100, null=True)), ('theme18', models.CharField(max_length=100, null=True)), ('theme19', models.CharField(max_length=100, null=True)), ('theme20', models.CharField(max_length=100, null=True)), ], options={ 'db_table': 'collection', 'managed': False, }, ), migrations.CreateModel( name='rs_collection_resource', fields=[ ('date_added', models.DateTimeField(auto_now_add=True, primary_key=True, serialize=False)), ('comment', models.TextField()), ('rating', models.IntegerField(null=True)), ('use_as_theme_thumbnail', models.IntegerField(null=True)), ('purchase_size', models.CharField(max_length=10, null=True)), ('purchase_complete', models.IntegerField(default='0')), ('purchase_price', models.FloatField(default='0.00', max_length=10)), ('sortorder', models.IntegerField(null=True)), ], options={ 'db_table': 'collection_resource', 'managed': False, }, ), migrations.CreateModel( name='rs_resource', fields=[ ('ref', models.IntegerField(primary_key=True, serialize=False)), ('title', models.CharField(max_length=200, null=True)), ('resource_type', models.IntegerField(null=True)), ('has_image', models.IntegerField(default='0')), ('is_transcoding', models.IntegerField(default='0')), ('hit_count', models.IntegerField(default='0')), ('new_hit_count', models.IntegerField(default='0')), ('creation_date', models.DateTimeField(blank=True, null=True)), ('rating', models.IntegerField(null=True)), ('user_rating', models.IntegerField(null=True)), ('user_rating_count', models.IntegerField(null=True)), ('user_rating_total', models.IntegerField(null=True)), ('country', models.CharField(default=None, max_length=200, null=True)), ('file_extension', models.CharField(max_length=10, null=True)), ('preview_extension', models.CharField(max_length=10, null=True)), ('image_red', models.IntegerField(null=True)), ('image_green', models.IntegerField(null=True)), ('image_blue', models.IntegerField(null=True)), ('thumb_width', models.IntegerField(null=True)), ('thumb_height', models.IntegerField(null=True)), ('archive', models.IntegerField(default='0')), ('access', models.IntegerField(default='0')), ('colour_key', models.CharField(max_length=5, null=True)), ('created_by', models.IntegerField(null=True)), ('file_path', models.CharField(max_length=500, null=True)), ('file_modified', models.DateTimeField(blank=True, null=True)), ('file_checksum', models.CharField(max_length=32, null=True)), ('request_count', models.IntegerField(default='0')), ('expiry_notification_sent', models.IntegerField(default='0')), ('preview_tweaks', models.CharField(max_length=50, null=True)), ('geo_lat', models.FloatField(default=None, null=True)), ('geo_long', models.FloatField(default=None, null=True)), ('mapzoom', models.IntegerField(null=True)), ('disk_usage', models.IntegerField(null=True)), ('disk_usage_last_updated', models.DateTimeField(blank=True, null=True)), ('file_size', models.IntegerField(default=None, null=True)), ('preview_attempts', models.IntegerField(default=None, null=True)), ('field12', models.CharField(default=None, max_length=200, null=True)), ('field8', models.CharField(default=None, max_length=200, null=True)), ('field3', models.CharField(default=None, max_length=200, null=True)), ('annotation_count', models.IntegerField(null=True)), ('field51', models.CharField(default=None, max_length=200, null=True)), ('field79', models.CharField(blank=True, default=None, max_length=200, null=True)), ('modified', models.DateTimeField(auto_now_add=True, null=True)), ], options={ 'db_table': 'resource', 'managed': False, }, ), migrations.CreateModel( name='rs_resource_data', fields=[ ('django_id', models.IntegerField(db_column='django_id', primary_key=True, serialize=False)), ('value', models.TextField()), ], options={ 'db_table': 'resource_data', 'managed': False, }, ), migrations.CreateModel( name='rs_resource_type_field', fields=[ ('ref', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=50, null=True)), ('title', models.CharField(max_length=400, null=True)), ('type', models.IntegerField(null=True)), ('order_by', models.IntegerField(default='0')), ('keywords_index', models.IntegerField(default='0')), ('partial_index', models.IntegerField(default='0')), ('resource_type', models.IntegerField(default='0')), ('resource_column', models.CharField(max_length=50, null=True)), ('display_field', models.IntegerField(default='1')), ('use_for_similar', models.IntegerField(default='1')), ('iptc_equiv', models.CharField(max_length=20, null=True)), ('display_template', models.TextField()), ('tab_name', models.CharField(max_length=50, null=True)), ('required', models.IntegerField(default='0')), ('smart_theme_name', models.CharField(max_length=200, null=True)), ('exiftool_field', models.CharField(max_length=200, null=True)), ('advanced_search', models.IntegerField(default='1')), ('simple_search', models.IntegerField(default='0')), ('help_text', models.TextField()), ('display_as_dropdown', models.IntegerField(default='0')), ('external_user_access', models.IntegerField(default='1')), ('autocomplete_macro', models.TextField()), ('hide_when_uploading', models.IntegerField(default='0')), ('hide_when_restricted', models.IntegerField(default='0')), ('value_filter', models.TextField()), ('exiftool_filter', models.TextField()), ('omit_when_copying', models.IntegerField(default='0')), ('tooltip_text', models.TextField()), ('regexp_filter', models.CharField(max_length=400, null=True)), ('sync_field', models.IntegerField(null=True)), ('display_condition', models.CharField(max_length=400, null=True)), ('onchange_macro', models.TextField()), ('field_constraint', models.IntegerField(null=True)), ('linked_data_field', models.TextField()), ('automatic_nodes_ordering', models.IntegerField(default='0')), ('fits_field', models.CharField(max_length=255, null=True)), ('personal_data', models.IntegerField(default='0')), ], options={ 'db_table': 'resource_type_field', 'managed': False, }, ), migrations.CreateModel( name='rs_user', fields=[ ('ref', models.IntegerField(primary_key=True, serialize=False)), ('username', models.CharField(max_length=50, unique=True)), ('password', models.CharField(max_length=64, null=True)), ('fullname', models.CharField(max_length=100, null=True)), ('email', models.CharField(max_length=100, null=True)), ('usergroup', models.IntegerField(choices=[(2, 'General User'), (4, 'Archivist'), (1, 'Administrator'), (3, 'Super Admin')], null=True)), ('last_active', models.DateTimeField(blank=True, null=True)), ('logged_in', models.IntegerField(null=True)), ('last_browser', models.TextField()), ('last_ip', models.CharField(max_length=100, null=True)), ('current_collection', models.IntegerField(null=True)), ('accepted_terms', models.IntegerField(default='0')), ('account_expires', models.DateTimeField(blank=True, null=True)), ('comments', models.TextField()), ('session', models.CharField(max_length=50, null=True)), ('ip_restrict', models.TextField()), ('search_filter_override', models.TextField()), ('password_last_change', models.DateTimeField(null=True)), ('login_tries', models.IntegerField(default='0')), ('login_last_try', models.DateTimeField(blank=True, null=True)), ('approved', models.IntegerField(default='1')), ('lang', models.CharField(max_length=11, null=True)), ('created', models.DateTimeField(auto_now_add=True, null=True)), ('hidden_collections', models.TextField()), ('password_reset_hash', models.CharField(max_length=100, null=True)), ('origin', models.CharField(max_length=50, null=True)), ('unique_hash', models.CharField(max_length=50, null=True)), ('wp_authrequest', models.CharField(max_length=50, null=True)), ('csrf_token', models.CharField(max_length=255, null=True)), ], options={ 'db_table': 'user', 'managed': False, }, ), migrations.CreateModel( name='Agent', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('standard_name', models.CharField(max_length=255)), ('type', models.IntegerField(choices=[(1, 'Person'), (2, 'Organization')])), ('notes', models.TextField()), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_agent_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_agent_modification', to=settings.AUTH_USER_MODEL)), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='agent', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Attachment', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('file', models.FileField(upload_to='attachments/%Y/%m/')), ('type', models.CharField(max_length=255, null=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attachment_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attachment_modification', to=settings.AUTH_USER_MODEL)), ('owner', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attachment_related', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Attribute_type', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255)), ('short_name', models.CharField(max_length=55, unique=True)), ('description', models.TextField()), ('data_type', models.CharField(choices=[('DATE', 'DATE (date)'), ('INT', 'INT (integer)'), ('STR', 'STR (string)'), ('TXT', 'TXT (text)'), ('FK-UUID', 'FK-UUID (DALME record)'), ('FK-INT', 'FK-INT (DALME record)')], max_length=15)), ('source', models.CharField(blank=True, default=None, max_length=255, null=True)), ('options_list', models.CharField(blank=True, default=None, max_length=255, null=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attribute_type_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attribute_type_modification', to=settings.AUTH_USER_MODEL)), ('same_as', models.ForeignKey(db_column='same_as', null=True, on_delete=django.db.models.deletion.SET_NULL, to='dalme_app.attribute_type')), ], options={ 'ordering': ['id'], }, ), migrations.CreateModel( name='Concept', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('getty_id', models.IntegerField(db_index=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_concept_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_concept_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Content_attributes', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('order', models.IntegerField(db_index=True, null=True)), ('required', models.BooleanField(default=False)), ('unique', models.BooleanField(default=True)), ('attribute_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='content_types', to='dalme_app.attribute_type')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Content_class', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255)), ('short_name', models.CharField(max_length=55, unique=True)), ('description', models.TextField()), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_content_class_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_content_class_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['id'], }, ), migrations.CreateModel( name='Content_type', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255, unique=True)), ('short_name', models.CharField(max_length=55)), ('description', models.TextField()), ('has_pages', models.BooleanField(db_index=True, default=False)), ('has_inventory', models.BooleanField(default=False)), ('parents', models.CharField(blank=True, default=None, max_length=255, null=True)), ('r1_inheritance', models.CharField(blank=True, default=None, max_length=255, null=True)), ('r2_inheritance', models.CharField(blank=True, default=None, max_length=255, null=True)), ('attribute_types', models.ManyToManyField(through='dalme_app.Content_attributes', to='dalme_app.Attribute_type')), ('content_class', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='dalme_app.content_class')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_content_type_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_content_type_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['id'], }, ), migrations.CreateModel( name='CountryReference', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255, unique=True)), ('alpha_3_code', models.CharField(max_length=3)), ('alpha_2_code', models.CharField(max_length=2)), ('num_code', models.IntegerField()), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_countryreference_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_countryreference_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['name'], }, ), migrations.CreateModel( name='Entity_phrase', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('phrase', models.TextField(blank=True)), ('type', models.IntegerField(choices=[(1, 'Agent'), (2, 'Object'), (3, 'Place')])), ('object_id', models.UUIDField(db_index=True, null=True)), ('content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_entity_phrase_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_entity_phrase_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Headword', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('word', models.CharField(max_length=55)), ('full_lemma', models.CharField(max_length=255)), ('concept_id', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='dalme_app.concept')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_headword_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_headword_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Object', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('concept', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dalme_app.concept')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_object_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_object_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Page', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=55)), ('dam_id', models.IntegerField(db_index=True, null=True)), ('order', models.IntegerField(db_index=True)), ('canvas', models.TextField(null=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_page_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_page_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['order'], }, ), migrations.CreateModel( name='Set', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255)), ('set_type', models.IntegerField(choices=[(1, 'Corpus'), (2, 'Collection'), (3, 'Dataset'), (4, 'Workset')])), ('is_public', models.BooleanField(default=False)), ('has_landing', models.BooleanField(default=False)), ('endpoint', models.CharField(max_length=55)), ('permissions', models.IntegerField(choices=[(1, 'Private'), (2, 'Others: view'), (3, 'Others: view|add'), (4, 'Others: view|add|delete')], default=2)), ('description', models.TextField()), ('stat_title', models.CharField(blank=True, max_length=25, null=True)), ('stat_text', models.CharField(blank=True, max_length=255, null=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_set_creation', to=settings.AUTH_USER_MODEL)), ('dataset_usergroup', models.ForeignKey(limit_choices_to={'properties__type': 3}, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='dataset', to='auth.group')), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_set_modification', to=settings.AUTH_USER_MODEL)), ('owner', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_set_related', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Source', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255)), ('short_name', models.CharField(max_length=55)), ('has_inventory', models.BooleanField(db_index=True, default=False)), ('is_private', models.BooleanField(db_index=True, default=False)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_modification', to=settings.AUTH_USER_MODEL)), ('owner', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_related', to=settings.AUTH_USER_MODEL)), ], bases=(wagtail.search.index.Indexed, models.Model), ), migrations.CreateModel( name='Wordform', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('normalized_form', models.CharField(max_length=55)), ('pos', models.CharField(max_length=255)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_wordform_creation', to=settings.AUTH_USER_MODEL)), ('headword_id', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='dalme_app.headword')), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_wordform_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Transcription', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('transcription', models.TextField(blank=True, default=None)), ('author', models.CharField(default=dalme_app.models._templates.get_current_username, max_length=255)), ('version', models.IntegerField(default=1)), ('count_ignore', models.BooleanField(default=False)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_transcription_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_transcription_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Token', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('raw_token', models.CharField(max_length=255)), ('clean_token', models.CharField(max_length=55)), ('order', models.IntegerField(db_index=True)), ('flags', models.CharField(max_length=10)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_token_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_token_modification', to=settings.AUTH_USER_MODEL)), ('object_phrase_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dalme_app.entity_phrase')), ('wordform_id', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='dalme_app.wordform')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Ticket', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('subject', models.CharField(max_length=140)), ('description', models.TextField(blank=True, null=True)), ('status', models.IntegerField(choices=[(0, 'Open'), (1, 'Closed')], default=0)), ('url', models.CharField(default=None, max_length=255, null=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_ticket_creation', to=settings.AUTH_USER_MODEL)), ('file', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='dalme_app.attachment')), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_ticket_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['status', 'creation_timestamp'], }, ), migrations.CreateModel( name='TaskList', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=60)), ('slug', models.SlugField(default='')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_tasklist_creation', to=settings.AUTH_USER_MODEL)), ('group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='task_list_group', to='auth.group')), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_tasklist_modification', to=settings.AUTH_USER_MODEL)), ('owner', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_tasklist_related', to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'Task Lists', 'ordering': ['name'], 'unique_together': {('group', 'slug')}, }, ), migrations.CreateModel( name='Task', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('title', models.CharField(max_length=140)), ('due_date', models.DateField(blank=True, null=True)), ('completed', models.BooleanField(default=False)), ('completed_date', models.DateField(blank=True, null=True)), ('description', models.TextField(blank=True, null=True)), ('priority', models.PositiveIntegerField(blank=True, null=True)), ('position', models.CharField(blank=True, default=None, max_length=255)), ('url', models.CharField(default=None, max_length=255, null=True)), ('assigned_to', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='task_assigned_to', to=settings.AUTH_USER_MODEL)), ('created_by', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='task_created_by', to=settings.AUTH_USER_MODEL)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_task_creation', to=settings.AUTH_USER_MODEL)), ('file', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='dalme_app.attachment')), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_task_modification', to=settings.AUTH_USER_MODEL)), ('task_list', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dalme_app.tasklist')), ('workset', models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='dalme_app.set')), ], options={ 'ordering': ['priority', 'creation_timestamp'], }, ), migrations.CreateModel( name='Tag', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('tag_type', models.CharField(choices=[('WF', 'Workflow'), ('C', 'Control'), ('T', 'Ticket')], max_length=2)), ('tag', models.CharField(default=None, max_length=55, null=True)), ('tag_group', models.CharField(default=None, max_length=255, null=True)), ('object_id', models.CharField(db_index=True, max_length=55, null=True)), ('content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_tag_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_tag_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Source_pages', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_pages_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_pages_modification', to=settings.AUTH_USER_MODEL)), ('page', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sources', to='dalme_app.page')), ('source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='source_pages', to='dalme_app.source')), ('transcription', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='source_pages', to='dalme_app.transcription')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='source', name='pages', field=models.ManyToManyField(db_index=True, through='dalme_app.Source_pages', to='dalme_app.Page'), ), migrations.AddField( model_name='source', name='parent', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='children', to='dalme_app.source'), ), migrations.AddField( model_name='source', name='primary_dataset', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_query_name='set_members', to='dalme_app.set'), ), migrations.AddField( model_name='source', name='type', field=models.ForeignKey(db_column='type', on_delete=django.db.models.deletion.PROTECT, to='dalme_app.content_type'), ), migrations.CreateModel( name='Scope', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('type', models.IntegerField(choices=[(1, 'Temporal'), (2, 'Spatial'), (3, 'Linguistic'), (4, 'Context')])), ('range', models.TextField()), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_scope_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_scope_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='RightsPolicy', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=100)), ('rights_status', models.IntegerField(choices=[(1, 'Copyrighted'), (2, 'Orphaned'), (3, 'Owned'), (4, 'Public Domain'), (5, 'Unknown')], default=5)), ('rights', models.TextField(blank=True, default=None)), ('rights_notice', models.JSONField(null=True)), ('licence', models.TextField(blank=True, default=None, null=True)), ('rights_holder', models.CharField(default=None, max_length=255, null=True)), ('notice_display', models.BooleanField(default=False)), ('public_display', models.BooleanField(default=True)), ('attachments', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='dalme_app.attachment')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_rightspolicy_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_rightspolicy_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Relationship', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('source_object_id', models.UUIDField(db_index=True, null=True)), ('target_object_id', models.UUIDField(db_index=True, null=True)), ('notes', models.TextField(blank=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_relationship_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_relationship_modification', to=settings.AUTH_USER_MODEL)), ('scope', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='dalme_app.scope')), ('source_content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='relationship_sources', to='contenttypes.contenttype')), ('target_content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='relationship_targets', to='contenttypes.contenttype')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='PublicRegister', fields=[ ('object_id', models.UUIDField(db_index=True, primary_key=True, serialize=False)), ('created', models.DateTimeField(auto_now_add=True, null=True)), ('content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ('creator', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_publicregister_creation', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('full_name', models.CharField(blank=True, max_length=50)), ('primary_group', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='auth.group')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Place', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('std_name', models.CharField(max_length=255)), ('type', models.IntegerField(db_index=True)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_place_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_place_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Object_attribute', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('attribute_concept', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dalme_app.concept')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_object_attribute_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_object_attribute_modification', to=settings.AUTH_USER_MODEL)), ('object', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dalme_app.object')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='LanguageReference', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('glottocode', models.CharField(max_length=25, unique=True)), ('iso6393', models.CharField(blank=True, default=None, max_length=25, null=True, unique=True)), ('name', models.CharField(max_length=255)), ('type', models.IntegerField(choices=[(1, 'Language'), (2, 'Dialect')])), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_languagereference_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_languagereference_modification', to=settings.AUTH_USER_MODEL)), ('parent', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='dalme_app.languagereference')), ], options={ 'ordering': ['name'], }, ), migrations.CreateModel( name='GroupProperties', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.IntegerField(choices=[(1, 'Admin'), (2, 'DAM'), (3, 'Dataset'), (4, 'Knowledge Base'), (5, 'Website')])), ('description', models.CharField(max_length=255)), ('group', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='properties', to='auth.group')), ], ), migrations.AddField( model_name='entity_phrase', name='transcription_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='entity_phrases', to='dalme_app.transcription'), ), migrations.AddField( model_name='content_attributes', name='content_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='attribute_type_list', to='dalme_app.content_type'), ), migrations.AddField( model_name='content_attributes', name='creation_user', field=models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_content_attributes_creation', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='content_attributes', name='modification_user', field=models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_content_attributes_modification', to=settings.AUTH_USER_MODEL), ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('object_id', models.CharField(db_index=True, max_length=55, null=True)), ('body', models.TextField(blank=True, default=None, null=True)), ('content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_comment_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_comment_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['creation_timestamp'], }, ), migrations.CreateModel( name='AttributeReference', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255)), ('short_name', models.CharField(max_length=55)), ('description', models.TextField()), ('data_type', models.CharField(max_length=15)), ('source', models.CharField(max_length=255)), ('term_type', models.CharField(blank=True, default=None, max_length=55)), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attributereference_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attributereference_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Workflow', fields=[ ('source', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, related_name='workflow', serialize=False, to='dalme_app.source')), ('wf_status', models.IntegerField(choices=[(1, 'assessing'), (2, 'processing'), (3, 'processed')], default=2)), ('stage', models.IntegerField(choices=[(1, 'ingestion'), (2, 'transcription'), (3, 'markup'), (4, 'review'), (5, 'parsing')], default=1)), ('last_modified', models.DateTimeField(blank=True, null=True)), ('help_flag', models.BooleanField(default=False)), ('ingestion_done', models.BooleanField(default=False)), ('transcription_done', models.BooleanField(default=False)), ('markup_done', models.BooleanField(default=False)), ('parsing_done', models.BooleanField(default=False)), ('review_done', models.BooleanField(default=False)), ('is_public', models.BooleanField(default=False)), ('last_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Work_log', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('event', models.CharField(max_length=255)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='work_log', to='dalme_app.workflow')), ], ), migrations.CreateModel( name='Source_credit', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('type', models.IntegerField(choices=[(1, 'Editor'), (2, 'Corrections'), (3, 'Contributor')])), ('note', models.CharField(blank=True, max_length=255, null=True)), ('agent', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='credits', to='dalme_app.agent')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_credit_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_source_credit_modification', to=settings.AUTH_USER_MODEL)), ('source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='credits', to='dalme_app.source')), ], options={ 'unique_together': {('source', 'agent', 'type')}, }, ), migrations.AlterUniqueTogether( name='source', unique_together={('type', 'name')}, ), migrations.CreateModel( name='Set_x_content', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('object_id', models.UUIDField(db_index=True, default=uuid.uuid4)), ('workset_done', models.BooleanField(default=False)), ('content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_set_x_content_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_set_x_content_modification', to=settings.AUTH_USER_MODEL)), ('set_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='members', to='dalme_app.set')), ], options={ 'ordering': ['set_id', 'id'], 'unique_together': {('content_type', 'object_id', 'set_id')}, }, ), migrations.CreateModel( name='LocaleReference', fields=[ ('id', models.AutoField(db_index=True, primary_key=True, serialize=False, unique=True)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=255)), ('administrative_region', models.CharField(max_length=255)), ('latitude', models.DecimalField(decimal_places=6, max_digits=9, null=True)), ('longitude', models.DecimalField(decimal_places=6, max_digits=9, null=True)), ('country', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='dalme_app.countryreference')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_localereference_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_localereference_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['country', 'name'], 'unique_together': {('name', 'administrative_region')}, }, ), migrations.CreateModel( name='Attribute', fields=[ ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('creation_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('modification_timestamp', models.DateTimeField(auto_now=True, null=True)), ('object_id', models.UUIDField(db_index=True, null=True)), ('value_STR', models.CharField(blank=True, default=None, max_length=255, null=True)), ('value_DATE_d', models.IntegerField(blank=True, null=True)), ('value_DATE_m', models.IntegerField(blank=True, null=True)), ('value_DATE_y', models.IntegerField(blank=True, null=True)), ('value_DATE', models.DateField(blank=True, null=True)), ('value_INT', models.IntegerField(blank=True, null=True)), ('value_TXT', models.TextField(blank=True, default=None, null=True)), ('value_JSON', models.JSONField(null=True)), ('attribute_type', models.ForeignKey(db_column='attribute_type', on_delete=django.db.models.deletion.CASCADE, to='dalme_app.attribute_type')), ('content_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ('creation_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attribute_creation', to=settings.AUTH_USER_MODEL)), ('modification_user', models.ForeignKey(default=django_currentuser.middleware.get_current_user, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='dalme_app_attribute_modification', to=settings.AUTH_USER_MODEL)), ], options={ 'unique_together': {('object_id', 'attribute_type', 'value_STR')}, }, ), ]
72.761194
257
0.636674
7,314
68,250
5.699344
0.063713
0.059302
0.041646
0.065443
0.828451
0.788245
0.737867
0.673983
0.646923
0.624565
0
0.00929
0.223985
68,250
937
258
72.838847
0.777769
0.000659
0
0.458065
1
0
0.16555
0.055335
0
0
0
0
0
1
0
false
0.003226
0.007527
0
0.011828
0
0
0
0
null
0
0
0
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
db6d31174807080316cb8c996b05fcc9ce69a5b7
40
py
Python
my_classes/.history/ModulesPackages_PackageNamespaces/example3a/main_20210725220637.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
my_classes/.history/ModulesPackages_PackageNamespaces/example3a/main_20210725220637.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
my_classes/.history/ModulesPackages_PackageNamespaces/example3a/main_20210725220637.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
import os.path import types import sys
8
14
0.8
7
40
4.571429
0.714286
0
0
0
0
0
0
0
0
0
0
0
0.175
40
4
15
10
0.969697
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
db752d631ccf3257bd962fe18b4682f3220a6fa6
178
py
Python
geoviz/__init__.py
JustinGOSSES/geoviz
159b0665d9efcffe46061313c15ad09ced840d2d
[ "MIT" ]
6
2018-10-16T16:38:15.000Z
2018-10-22T13:56:13.000Z
geoviz/__init__.py
JustinGOSSES/geoviz
159b0665d9efcffe46061313c15ad09ced840d2d
[ "MIT" ]
5
2018-10-14T21:49:00.000Z
2018-11-12T18:59:48.000Z
geoviz/__init__.py
nathangeology/geoviz
5643e8880b4ecc241d4f8806743bf0441dd435c1
[ "MIT" ]
1
2019-05-30T23:36:29.000Z
2019-05-30T23:36:29.000Z
from load_las_data import LoadLasData from altair_log_plot import AltAirLogPlot from load_shapefile_data import LoadShpData from alitair_well_location_map import WellLocationMap
35.6
53
0.910112
25
178
6.12
0.68
0.104575
0
0
0
0
0
0
0
0
0
0
0.089888
178
4
54
44.5
0.944444
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
dbca8d6120f0830afa062de217262e49809ebe82
388
py
Python
backend/api/tests/test_models/test_utils/test_ranking_suffixes.py
ChristchurchCityWeightlifting/lifter-api
a82b79c75106e7f4f8ea4b4e3e12d727213445e3
[ "MIT" ]
null
null
null
backend/api/tests/test_models/test_utils/test_ranking_suffixes.py
ChristchurchCityWeightlifting/lifter-api
a82b79c75106e7f4f8ea4b4e3e12d727213445e3
[ "MIT" ]
5
2022-03-07T08:30:47.000Z
2022-03-22T09:15:52.000Z
backend/api/tests/test_models/test_utils/test_ranking_suffixes.py
ChristchurchCityWeightlifting/lifter-api
a82b79c75106e7f4f8ea4b4e3e12d727213445e3
[ "MIT" ]
null
null
null
import pytest from api.models.utils import rankings @pytest.fixture def test_data(): return [1, 11, 101] def test_rankings(test_data): """Tests if ranking works e.g. 1 returns 1st 11 returns 11th 101 return 101st """ assert rankings(test_data[0]) == "1st" assert rankings(test_data[1]) == "11th" assert rankings(test_data[2]) == "101st"
19.4
44
0.641753
55
388
4.418182
0.509091
0.164609
0.263374
0.271605
0
0
0
0
0
0
0
0.091525
0.239691
388
19
45
20.421053
0.732203
0.216495
0
0
0
0
0.042705
0
0
0
0
0
0.333333
1
0.222222
false
0
0.222222
0.111111
0.555556
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
5
918a3b0f516ea68dd89954d9a42756ad875c22c6
33
py
Python
src/stoat/core/structure/__init__.py
saarkatz/guppy-struct
b9099353312c365cfd788dbd2d168a9c844765be
[ "Apache-2.0" ]
1
2021-12-07T11:59:11.000Z
2021-12-07T11:59:11.000Z
src/stoat/core/structure/__init__.py
saarkatz/stoat-struct
b9099353312c365cfd788dbd2d168a9c844765be
[ "Apache-2.0" ]
null
null
null
src/stoat/core/structure/__init__.py
saarkatz/stoat-struct
b9099353312c365cfd788dbd2d168a9c844765be
[ "Apache-2.0" ]
null
null
null
from .structure import Structure
16.5
32
0.848485
4
33
7
0.75
0
0
0
0
0
0
0
0
0
0
0
0.121212
33
1
33
33
0.965517
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
91903bbb82369647bc8ec6646143a89d378edc88
234
py
Python
iqoptionapi/http/billing.py
mustx1/MYIQ
3afb597aa8a8abc278b7d70dad46af81789eae3e
[ "MIT" ]
3
2021-06-05T06:58:01.000Z
2021-11-25T23:52:18.000Z
iqoptionapi/http/billing.py
mustx1/MYIQ
3afb597aa8a8abc278b7d70dad46af81789eae3e
[ "MIT" ]
5
2022-01-20T00:32:49.000Z
2022-02-16T23:12:10.000Z
iqoptionapi/http/billing.py
mustx1/MYIQ
3afb597aa8a8abc278b7d70dad46af81789eae3e
[ "MIT" ]
2
2020-11-10T19:03:38.000Z
2020-12-07T10:42:36.000Z
"""Module for IQ option billing resource.""" from iqoptionapi.http.resource import Resource class Billing(Resource): """Class for IQ option billing resource.""" # pylint: disable=too-few-public-methods url = "billing"
21.272727
47
0.709402
29
234
5.724138
0.62069
0.271084
0.13253
0.216867
0.313253
0
0
0
0
0
0
0
0.17094
234
10
48
23.4
0.85567
0.495727
0
0
0
0
0.065421
0
0
0
0
0
0
1
0
false
0
0.333333
0
1
0
1
0
0
null
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
91b62cc1816352d2c7a0ead7b1bf1eabb9a68df6
8,113
py
Python
dataset.py
mintanwei/IPCLs-Net
04937df683216a090c0749cc90ab7e517dbab0fd
[ "MIT" ]
null
null
null
dataset.py
mintanwei/IPCLs-Net
04937df683216a090c0749cc90ab7e517dbab0fd
[ "MIT" ]
null
null
null
dataset.py
mintanwei/IPCLs-Net
04937df683216a090c0749cc90ab7e517dbab0fd
[ "MIT" ]
null
null
null
import os import torch from PIL import Image from read_csv import csv_to_label_and_bbx import numpy as np from torch.utils.data import Subset, random_split, ConcatDataset class NBIDataset(object): def __init__(self, root, transforms, nob3=False): self.root = root self.transforms = transforms # load all image files, sorting them to ensure that they are aligned self.imgs = list(sorted(os.listdir(os.path.join(root, "images")))) self.boxes = csv_to_label_and_bbx(os.path.join(self.root, "annotations.csv"), nob3) def __getitem__(self, idx): img_path = os.path.join(self.root, "images", self.imgs[idx]) img = Image.open(img_path).convert("RGB") annotations = self.boxes[self.imgs[idx]] boxes = annotations['bbx'] labels = annotations['labels'] # FloatTensor[N, 4] boxes = torch.as_tensor(boxes, dtype=torch.float32) # Int64Tensor[N] labels = torch.as_tensor(labels, dtype=torch.int64) image_id = torch.tensor([idx]) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) iscrowd = torch.zeros((labels.size()[0],), dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels target["image_id"] = image_id # target["image_path"] = img_path target["area"] = area target["iscrowd"] = iscrowd if self.transforms is not None: img = self.transforms(img) # target = self.transforms(target) return img, target def __len__(self): return len(self.imgs) class NBINewDataset(object): def __init__(self, root, transforms, train=True): self.root = root self.transforms = transforms if train: self.path = os.path.join(root, "train") else: self.path = os.path.join(root, "test") self.imgs = list(sorted(os.listdir(self.path))) self.boxes = csv_to_label_and_bbx(os.path.join(self.root, "annotations_all.csv"), img_names=self.imgs) def __getitem__(self, idx): img_path = os.path.join(self.path, self.imgs[idx]) img = Image.open(img_path).convert("RGB") annotations = self.boxes[self.imgs[idx]] boxes = annotations['bbx'] labels = annotations['labels'] # FloatTensor[N, 4] boxes = torch.as_tensor(boxes, dtype=torch.float32) # Int64Tensor[N] labels = torch.as_tensor(labels, dtype=torch.int64) image_id = torch.tensor([idx]) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) iscrowd = torch.zeros((labels.size()[0],), dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels target["image_id"] = image_id # target["image_path"] = img_path target["area"] = area target["iscrowd"] = iscrowd if self.transforms is not None: img = self.transforms(img) # target = self.transforms(target) return img, target def __len__(self): return len(self.imgs) class NBIFullDataset(object): def __init__(self, root, transforms): self.root = root self.transforms = transforms self.path = os.path.join(root, "all") self.imgs = list(sorted(os.listdir(self.path))) self.boxes = csv_to_label_and_bbx(os.path.join(self.root, "annotations.csv"), img_names=self.imgs) def __getitem__(self, idx): img_path = os.path.join(self.path, self.imgs[idx]) img = Image.open(img_path).convert("RGB") annotations = self.boxes[self.imgs[idx]] boxes = annotations['bbx'] labels = annotations['labels'] # FloatTensor[N, 4] boxes = torch.as_tensor(boxes, dtype=torch.float32) # Int64Tensor[N] labels = torch.as_tensor(labels, dtype=torch.int64) image_id = torch.tensor([idx]) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) iscrowd = torch.zeros((labels.size()[0],), dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels target["image_id"] = image_id # target["image_path"] = img_path target["area"] = area target["iscrowd"] = iscrowd if self.transforms is not None: img = self.transforms(img) # target = self.transforms(target) return img, target def __len__(self): return len(self.imgs) class NBIDenseDataset(object): def __init__(self, root, transforms): self.root = root self.transforms = transforms # load all image files, sorting them to ensure that they are aligned self.imgs = list(sorted(os.listdir(os.path.join(root, "images")))) def __getitem__(self, idx): img_path = os.path.join(self.root, "images", self.imgs[idx]) img = Image.open(img_path).convert("RGB") density_path = os.path.join(self.root, "density_maps") density_map = np.load(os.path.join(density_path, self.imgs[idx][:-4] + ".npy")) density_map = torch.from_numpy(density_map) if self.transforms is not None: img = self.transforms(img) # target = self.transforms(target) return img, density_map def __len__(self): return len(self.imgs) class NBIPatchDataset(object): def __init__(self, root, transforms): self.root = root self.transforms = transforms # load all image files, sorting them to ensure that they are aligned self.imgs = [x for x in list(sorted(os.listdir(root))) if x[-3:] == "png"] self.ans = np.load(os.path.join(root, "ans.npy"), allow_pickle=True).item() def __getitem__(self, idx): # img_path = os.path.join(self.root, "images", self.imgs[idx]) # img = Image.open(img_path).convert("RGB") # density_path = os.path.join(self.root, "density_maps") # density_map = np.load(os.path.join(density_path, self.imgs[idx][:-4] + ".npy")) # density_map = torch.from_numpy(density_map) # # if self.transforms is not None: # img = self.transforms(img) # # target = self.transforms(target) return self.imgs[idx] def __len__(self): return len(self.imgs) def split_index(K=5, len=100): idx = list(range(len)) final_list = [] for i in range(K): final_list.append(idx[(i*len)//K:((i+1)*len)//K]) return final_list def k_fold_index(K=5, len=100, fold=0): split = split_index(K, len) val = split[fold] train = [] for i in range(K): if i != fold: train = train + split[i] return train, val def stat_dataset(dataset): class_ids = {1: "A", 2: "B1", 3: "B2", 4: "B3"} stats = {"A": 0, "B1": 0, "B2": 0, "B3": 0} for img, target in dataset: for k in target['labels']: stats[class_ids[int(k)]] += 1 print(stats) def NBIFiveFoldDataset(transforms): ds = NBIFullDataset(root="./NBI_full_dataset/", transforms=transforms) # n = len(ds) # for i in range(5): # train_idx, val_idx = k_fold_index(5, n, i) # train_subset = Subset(ds, train_idx) # val_subset = Subset(ds, val_idx) # print("Fold: %d" % i, len(train_subset), len(val_subset)) # stat_dataset(train_subset) # stat_dataset(val_subset) torch.manual_seed(13) all_subsets = random_split(ds, [46, 46, 46, 45, 45]) fold_i_subsets = [] for i in range(5): val_subset = all_subsets[i] train_subset = ConcatDataset([all_subsets[j] for j in range(5) if j != i]) fold_i_subsets.append({"train": train_subset, "val": val_subset}) # print("Fold: %d" % i, len(train_subset), len(val_subset)) # stat_dataset(train_subset) # stat_dataset(val_subset) return fold_i_subsets if __name__ == '__main__': # ds = NBIFiveFoldDataset(None) di = "aaa".encode("UTF-8") result = eval(di) print(result)
32.322709
110
0.598053
1,065
8,113
4.384038
0.134272
0.039409
0.038552
0.029985
0.773185
0.750482
0.715357
0.709574
0.70272
0.70272
0
0.014833
0.260446
8,113
250
111
32.452
0.763333
0.163688
0
0.608974
0
0
0.044922
0
0
0
0
0
0
1
0.121795
false
0
0.038462
0.038462
0.275641
0.012821
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
91d921988391847f171d7f816701e122ce388582
143
py
Python
tb/storage/__init__.py
DronMDF/manabot
b412e8cb9b5247f05487bed4cbf4967f7b58327f
[ "MIT" ]
1
2017-11-29T11:51:12.000Z
2017-11-29T11:51:12.000Z
tb/storage/__init__.py
DronMDF/manabot
b412e8cb9b5247f05487bed4cbf4967f7b58327f
[ "MIT" ]
109
2017-11-28T20:51:59.000Z
2018-02-02T13:15:29.000Z
tb/storage/__init__.py
DronMDF/manabot
b412e8cb9b5247f05487bed4cbf4967f7b58327f
[ "MIT" ]
null
null
null
from .database import StDatabase from .telegram import StTelegram from .tinydb import TinyDataBase, TinySelect from .utility import StDispatch
28.6
44
0.846154
17
143
7.117647
0.647059
0
0
0
0
0
0
0
0
0
0
0
0.118881
143
4
45
35.75
0.960317
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
37cd4b6be89839faecee7dd52588398ff12411ba
247
py
Python
src/compas_blender/forms/__init__.py
yijiangh/compas
a9e86edf6b602f47ca051fccedcaa88a5e5d3600
[ "MIT" ]
1
2019-03-27T22:32:56.000Z
2019-03-27T22:32:56.000Z
src/compas_blender/forms/__init__.py
yijiangh/compas
a9e86edf6b602f47ca051fccedcaa88a5e5d3600
[ "MIT" ]
null
null
null
src/compas_blender/forms/__init__.py
yijiangh/compas
a9e86edf6b602f47ca051fccedcaa88a5e5d3600
[ "MIT" ]
null
null
null
""" ******************************************************************************** compas_blender.forms ******************************************************************************** .. currentmodule:: compas_blender.forms """ __all__ = []
22.454545
80
0.234818
8
247
6.5
0.625
0.5
0.692308
0
0
0
0
0
0
0
0
0
0.05668
247
10
81
24.7
0.223176
0.902834
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
37e97b75428a1033eda5441303e4da93aa132446
221
py
Python
src/wormhole/__main__.py
dmgolembiowski/magic-wormhole
d517a10282d5e56f300db462b1a6eec517202af7
[ "MIT" ]
2,801
2021-01-10T16:37:14.000Z
2022-03-31T19:02:50.000Z
src/wormhole/__main__.py
dmgolembiowski/magic-wormhole
d517a10282d5e56f300db462b1a6eec517202af7
[ "MIT" ]
52
2021-01-10T01:54:00.000Z
2022-03-11T13:12:41.000Z
src/wormhole/__main__.py
dmgolembiowski/magic-wormhole
d517a10282d5e56f300db462b1a6eec517202af7
[ "MIT" ]
106
2021-01-21T14:32:22.000Z
2022-03-18T10:33:09.000Z
from __future__ import absolute_import, print_function, unicode_literals if __name__ == "__main__": from .cli import cli cli.wormhole() else: # raise ImportError('this module should not be imported') pass
27.625
72
0.737557
28
221
5.285714
0.821429
0
0
0
0
0
0
0
0
0
0
0
0.18552
221
7
73
31.571429
0.822222
0.248869
0
0
0
0
0.04878
0
0
0
0
0
0
1
0
true
0.166667
0.333333
0
0.333333
0.166667
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
0
0
0
5
37f7e625de3ee5f43165604bef1b04155036f942
56
py
Python
models/__init__.py
TvSeriesFans/CineMonster
036a3223618afd536932d21b0e86d18d0fba3b28
[ "Apache-2.0" ]
15
2017-09-17T17:52:43.000Z
2020-08-31T15:41:12.000Z
models/__init__.py
TvSeriesFans/CineMonster
036a3223618afd536932d21b0e86d18d0fba3b28
[ "Apache-2.0" ]
13
2017-03-14T13:24:14.000Z
2021-08-20T13:52:54.000Z
models/__init__.py
TvSeriesFans/CineMonster
036a3223618afd536932d21b0e86d18d0fba3b28
[ "Apache-2.0" ]
27
2017-07-01T18:33:49.000Z
2021-08-05T09:13:18.000Z
from models.Model import Player, Group, Session, engine
28
55
0.803571
8
56
5.625
1
0
0
0
0
0
0
0
0
0
0
0
0.125
56
1
56
56
0.918367
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
37fbc6ec2f245fb6973d1636993985b6d187eb07
63
py
Python
src/csvutils.py
imco/nmx
5c6303ece6148a83963b2e6524d6f94b450ad659
[ "MIT" ]
null
null
null
src/csvutils.py
imco/nmx
5c6303ece6148a83963b2e6524d6f94b450ad659
[ "MIT" ]
null
null
null
src/csvutils.py
imco/nmx
5c6303ece6148a83963b2e6524d6f94b450ad659
[ "MIT" ]
1
2020-04-07T19:02:41.000Z
2020-04-07T19:02:41.000Z
def escapeQuotes(string): return string.replace('"','""');
21
36
0.634921
6
63
6.666667
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.126984
63
2
37
31.5
0.727273
0
0
0
0
0
0.047619
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
5
37fbd5a54d581539270bd58bff9f475311ff3236
68
py
Python
test/sanity_import_vpp_papi.py
amithbraj/vpp
edf1da94dc099c6e2ab1d455ce8652fada3cdb04
[ "Apache-2.0" ]
751
2017-07-13T06:16:46.000Z
2022-03-30T09:14:35.000Z
test/sanity_import_vpp_papi.py
amithbraj/vpp
edf1da94dc099c6e2ab1d455ce8652fada3cdb04
[ "Apache-2.0" ]
63
2018-06-11T09:48:35.000Z
2021-01-05T09:11:03.000Z
test/sanity_import_vpp_papi.py
amithbraj/vpp
edf1da94dc099c6e2ab1d455ce8652fada3cdb04
[ "Apache-2.0" ]
479
2017-07-13T06:17:26.000Z
2022-03-31T18:20:43.000Z
#!/usr/bin/env python3 """ sanity check script """ import vpp_papi
13.6
27
0.691176
10
68
4.6
1
0
0
0
0
0
0
0
0
0
0
0.017241
0.147059
68
4
28
17
0.775862
0.617647
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
5338514dfbd12161e51e2cea2de687a8253338f8
28,526
py
Python
PyDSTool/PyCont/BifPoint.py
mdlama/pydstool
3d298e908ff55340cd3612078508be0c791f63a8
[ "Python-2.0", "OLDAP-2.7" ]
2
2021-02-04T15:01:31.000Z
2021-02-25T16:08:43.000Z
PyDSTool/PyCont/BifPoint.py
mdlama/pydstool
3d298e908ff55340cd3612078508be0c791f63a8
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
PyDSTool/PyCont/BifPoint.py
mdlama/pydstool
3d298e908ff55340cd3612078508be0c791f63a8
[ "Python-2.0", "OLDAP-2.7" ]
1
2021-02-25T14:43:36.000Z
2021-02-25T14:43:36.000Z
""" Bifurcation point classes. Each class locates and processes bifurcation points. * _BranchPointFold is a version based on BranchPoint location algorithms * BranchPoint: Branch process is broken (can't find alternate branch -- see MATCONT notes) Drew LaMar, March 2006 """ from __future__ import absolute_import, print_function from .misc import * from PyDSTool.common import args from .TestFunc import DiscreteMap, FixedPointMap from numpy import Inf, NaN, isfinite, r_, c_, sign, mod, \ subtract, divide, transpose, eye, real, imag, \ conjugate, average from scipy import optimize, linalg from numpy import dot as matrixmultiply from numpy import array, float, complex, int, float64, complex64, int32, \ zeros, divide, subtract, reshape, argsort, nonzero ##### _classes = ['BifPoint', 'BPoint', 'BranchPoint', 'FoldPoint', 'HopfPoint', 'BTPoint', 'ZHPoint', 'CPPoint', 'BranchPointFold', '_BranchPointFold', 'DHPoint', 'GHPoint', 'LPCPoint', 'PDPoint', 'NSPoint', 'SPoint'] __all__ = _classes ##### class BifPoint(object): def __init__(self, testfuncs, flagfuncs, label='Bifurcation', stop=False): self.testfuncs = [] self.flagfuncs = [] self.found = [] self.label = label self.stop = stop self.data = args() if not isinstance(testfuncs, list): testfuncs = [testfuncs] if not isinstance(flagfuncs, list): flagfuncs = [flagfuncs] self.testfuncs.extend(testfuncs) self.flagfuncs.extend(flagfuncs) self.tflen = len(self.testfuncs) def locate(self, P1, P2, C): pointlist = [] for i, testfunc in enumerate(self.testfuncs): if self.flagfuncs[i] == iszero: for ind in range(testfunc.m): X, V = testfunc.findzero(P1, P2, ind) pointlist.append((X,V)) X = average([point[0] for point in pointlist], axis=0) V = average([point[1] for point in pointlist], axis=0) C.Corrector(X,V) return X, V def process(self, X, V, C): data = args() data.X = todict(C, X) data.V = todict(C, V) self.found.append(data) def info(self, C, ind=None, strlist=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] if C.verbosity >= 1: print(self.label + ' Point found ') if C.verbosity >= 2: print('========================== ') for n, i in enumerate(ind): print(n, ': ') Xd = self.found[i].X for k, j in Xd.items(): print(k, ' = ', j) print('') if hasattr(self.found[i], 'eigs'): print('Eigenvalues = \n') for x in self.found[i].eigs: print(' (%f,%f)' % (x.real, x.imag)) print('\n') if strlist is not None: for string in strlist: print(string) print('') class SPoint(BifPoint): """Special point that represents user-selected free parameter values.""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'S', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) self.info(C, -1) return True class BPoint(BifPoint): """Special point that represents boundary of computational domain.""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'B', stop=stop) def locate(self, P1, P2, C): # Find location that triggered testfunc and initialize testfunc to that index val1 = (P1[0]-self.testfuncs[0].lower)*(self.testfuncs[0].upper-P1[0]) val2 = (P2[0]-self.testfuncs[0].lower)*(self.testfuncs[0].upper-P2[0]) ind = nonzero(val1*val2 < 0) self.testfuncs[0].ind = ind self.testfuncs[0].func = self.testfuncs[0].one X, V = BifPoint.locate(self, P1, P2, C) # Set testfunc back to monitoring all self.testfuncs[0].ind = None self.testfuncs[0].func = self.testfuncs[0].all return X, V def process(self, X, V, C): BifPoint.process(self, X, V, C) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class BranchPoint(BifPoint): """May only work for EquilibriumCurve ... (needs fixing)""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BP', stop=stop) def __locate_newton(self, X, C): """x[0:self.dim] = (x,alpha) x[self.dim] = beta x[self.dim+1:2*self.dim] = p """ J_coords = C.CorrFunc.jac(X[0:C.dim], C.coords) J_params = C.CorrFunc.jac(X[0:C.dim], C.params) return r_[C.CorrFunc(X[0:C.dim]) + X[C.dim]*X[C.dim+1:], \ matrixmultiply(transpose(J_coords),X[C.dim+1:]), \ matrixmultiply(transpose(X[C.dim+1:]),J_params), \ matrixmultiply(transpose(X[C.dim+1:]),X[C.dim+1:]) - 1] def locate(self, P1, P2, C): # Initiliaze p vector to eigenvector with smallest eigenvalue X, V = P1 X2, V2 = P2 J_coords = C.CorrFunc.jac(X, C.coords) W, VL = linalg.eig(J_coords, left=1, right=0) ind = argsort([abs(eig) for eig in W])[0] p = real(VL[:,ind]) initpoint = zeros(2*C.dim, float) initpoint[0:C.dim] = X initpoint[C.dim+1:] = p X = optimize.fsolve(self.__locate_newton, initpoint, C) self.data.psi = X[C.dim+1:] X = X[0:C.dim] V = 0.5*(V+V2) return X, V def process(self, X, V, C): BifPoint.process(self, X, V, C) # Finds the new branch J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) singular = True perpvec = r_[1,zeros(C.dim-1)] d = 1 while singular and d <= C.dim: try: v0 = linalg.solve(r_[c_[J_coords, J_params], [perpvec]], \ r_[zeros(C.dim-1),1]) except: perpvec = r_[0., perpvec[0:(C.dim-1)]] d += 1 else: singular = False if singular: raise PyDSTool_ExistError("Problem in _compute: Failed to compute tangent vector.") v0 /= linalg.norm(v0) V = sign([x for x in v0 if abs(x) > 1e-8][0])*v0 A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = [ind for ind, eig in enumerate(W) if abs(eig) < 5e-5] V1 = real(VR[:,W0[0]]) H = C.CorrFunc.hess(X, C.coords+C.params, C.coords+C.params) c11 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) c12 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) c22 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) beta = 1 alpha = -1*c22/(2*c12) V1 = alpha*V + beta*V1 V1 /= linalg.norm(V1) self.found[-1].eigs = W self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ tocoords(C, self.found[i].branch)))) X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) BifPoint.info(self, C, ind, strlist) class FoldPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'LP', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) # Compute normal form coefficient # NOTE: These are for free when using bordering technique!) # NOTE: Does not agree with MATCONT output! (if |p| = |q| = 1, then it does) J_coords = C.CorrFunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) minW = min(abs(W)) ind = [(abs(eig) < minW+1e-8) and (abs(eig) > minW-1e-8) for eig in W].index(True) p, q = real(VL[:,ind]), real(VR[:,ind]) p /= matrixmultiply(p,q) B = C.CorrFunc.hess(X, C.coords, C.coords) self.found[-1].a = abs(0.5*matrixmultiply(p,[bilinearform(B[i,:,:], q, q) for i in range(B.shape[0])])) self.found[-1].eigs = W numzero = len([eig for eig in W if abs(eig) < 1e-4]) if numzero > 1: if C.verbosity >= 2: print('Fold-Fold!\n') del self.found[-1] return False elif numzero == 0: if C.verbosity >= 2: print('False positive!\n') del self.found[-1] return False if C.verbosity >= 2: print('\nChecking...') print(' |q| = %f' % linalg.norm(q)) print(' <p,q> = %f' % matrixmultiply(p,q)) print(' |Aq| = %f' % linalg.norm(matrixmultiply(J_coords,q))) print(' |transpose(A)p| = %f\n' % linalg.norm(matrixmultiply(transpose(J_coords),p))) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('a = ' + repr(self.found[i].a)) BifPoint.info(self, C, ind, strlist) class HopfPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'H', stop=stop) def process(self, X, V, C): """Tolerance for eigenvalues a possible problem when checking for neutral saddles.""" BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.jac(X, C.coords) eigs, LV, RV = linalg.eig(J_coords,left=1,right=1) # Check for neutral saddles found = False for i in range(len(eigs)): if abs(imag(eigs[i])) < 1e-5: for j in range(i+1,len(eigs)): if C.verbosity >= 2: if abs(eigs[i]) < 1e-5 and abs(eigs[j]) < 1e-5: print('Fold-Fold point found in Hopf!\n') elif abs(imag(eigs[j])) < 1e-5 and abs(real(eigs[i]) + real(eigs[j])) < 1e-5: print('Neutral saddle found!\n') elif abs(real(eigs[i])) < 1e-5: for j in range(i+1, len(eigs)): if abs(real(eigs[j])) < 1e-5 and abs(real(eigs[i]) - real(eigs[j])) < 1e-5: found = True w = abs(imag(eigs[i])) if imag(eigs[i]) > 0: p = conjugate(LV[:,j])/linalg.norm(LV[:,j]) q = RV[:,i]/linalg.norm(RV[:,i]) else: p = conjugate(LV[:,i])/linalg.norm(LV[:,i]) q = RV[:,j]/linalg.norm(RV[:,j]) if not found: del self.found[-1] return False direc = conjugate(1/matrixmultiply(conjugate(p),q)) p = direc*p # Alternate way to compute 1st lyapunov coefficient (from Kuznetsov [4]) #print (1./(w*w))*real(1j*matrixmultiply(conjugate(p),b1)*matrixmultiply(conjugate(p),b3) + \ # w*matrixmultiply(conjugate(p),trilinearform(D,q,q,conjugate(q)))) self.found[-1].w = w self.found[-1].l1 = firstlyapunov(X, C.CorrFunc, w, J_coords=J_coords, p=p, q=q, check=(C.verbosity==2)) self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('w = ' + repr(self.found[i].w)) strlist.append('l1 = ' + repr(self.found[i].l1)) BifPoint.info(self, C, ind, strlist) # Codimension-2 bifurcations class BTPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BT', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) self.found[-1].eigs = W if C.verbosity >= 2: if C.CorrFunc.testfunc.data.B.shape[1] == 2: b = matrixmultiply(transpose(J_coords), C.CorrFunc.testfunc.data.w[:,0]) c = matrixmultiply(J_coords, C.CorrFunc.testfunc.data.v[:,0]) else: b = C.CorrFunc.testfunc.data.w[:,0] c = C.CorrFunc.testfunc.data.v[:,0] print('\nChecking...') print(' <b,c> = %f' % matrixmultiply(transpose(b), c)) print('\n') self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class ZHPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'ZH', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) self.found[-1].eigs = W self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class CPPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'CP', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) B = C.CorrFunc.sysfunc.hess(X, C.coords, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) q = C.CorrFunc.testfunc.data.C/linalg.norm(C.CorrFunc.testfunc.data.C) p = C.CorrFunc.testfunc.data.B/matrixmultiply(transpose(C.CorrFunc.testfunc.data.B),q) self.found[-1].eigs = W a = 0.5*matrixmultiply(transpose(p), reshape([bilinearform(B[i,:,:], q, q) \ for i in range(B.shape[0])],(B.shape[0],1)))[0][0] if C.verbosity >= 2: print('\nChecking...') print(' |a| = %f' % a) print('\n') self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class BranchPointFold(BifPoint): """Check Equilibrium.m in MATCONT""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BP', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) pind = self.testfuncs[0].pind # Finds the new branch J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) A = r_[c_[J_coords, J_params[:,pind]]] #A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = [ind for ind, eig in enumerate(W) if abs(eig) < 5e-5] tmp = real(VR[:,W0[0]]) V1 = r_[tmp[:-1], 0, 0] V1[len(tmp)-1+pind] = tmp[-1] """NEED TO FIX THIS!""" H = C.CorrFunc.hess(X, C.coords+C.params, C.coords+C.params) # c11 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) # c12 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) # c22 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) # beta = 1 # alpha = -1*c22/(2*c12) # V1 = alpha*V + beta*V1 # V1 /= linalg.norm(V1) self.found[-1].eigs = W self.found[-1].branch = None self.found[-1].par = C.freepars[self.testfuncs[0].pind] # self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] #for n, i in enumerate(ind): # strlist.append('branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ # tocoords(C, self.found[i].branch)))) X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) BifPoint.info(self, C, ind, strlist) class _BranchPointFold(BifPoint): """Check Equilibrium.m in MATCONT""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BP', stop=stop) def __locate_newton(self, X, C): """Note: This is redundant!! B is a column of A!!! Works for now, though...""" pind = self.testfuncs[0].pind J_coords = C.CorrFunc.jac(X[0:C.dim], C.coords) J_params = C.CorrFunc.jac(X[0:C.dim], C.params) A = c_[J_coords, J_params[:,pind]] B = J_params[:,pind] return r_[C.CorrFunc(X[0:C.dim]) + X[C.dim]*X[C.dim+1:], \ matrixmultiply(transpose(A),X[C.dim+1:]), \ matrixmultiply(transpose(X[C.dim+1:]),B), \ matrixmultiply(transpose(X[C.dim+1:]),X[C.dim+1:]) - 1] def locate(self, P1, P2, C): # Initiliaze p vector to eigenvector with smallest eigenvalue X, V = P1 pind = self.testfuncs[0].pind J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) A = r_[c_[J_coords, J_params[:,pind]]] W, VL = linalg.eig(A, left=1, right=0) ind = argsort([abs(eig) for eig in W])[0] p = real(VL[:,ind]) initpoint = zeros(2*C.dim, float) initpoint[0:C.dim] = X initpoint[C.dim+1:] = p X = optimize.fsolve(self.__locate_newton, initpoint, C) self.data.psi = X[C.dim+1:] X = X[0:C.dim] return X, V def process(self, X, V, C): BifPoint.process(self, X, V, C) pind = self.testfuncs[0].pind # Finds the new branch J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) A = r_[c_[J_coords, J_params[:,pind]]] #A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = [ind for ind, eig in enumerate(W) if abs(eig) < 5e-5] tmp = real(VR[:,W0[0]]) V1 = r_[tmp[:-1], 0, 0] V1[len(tmp)-1+pind] = tmp[-1] """NEED TO FIX THIS!""" H = C.CorrFunc.hess(X, C.coords+C.params, C.coords+C.params) c11 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) c12 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) c22 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) beta = 1 alpha = -1*c22/(2*c12) V1 = alpha*V + beta*V1 V1 /= linalg.norm(V1) self.found[-1].eigs = W self.found[-1].branch = None self.found[-1].par = C.freepars[self.testfuncs[0].pind] self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] #for n, i in enumerate(ind): # strlist.append('branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ # tocoords(C, self.found[i].branch)))) X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) BifPoint.info(self, C, ind, strlist) class DHPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'DH', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) eigs, LV, RV = linalg.eig(J_coords,left=1,right=1) self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class GHPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'GH', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) eigs, LV, RV = linalg.eig(J_coords,left=1,right=1) # Check for neutral saddles found = False for i in range(len(eigs)): if abs(imag(eigs[i])) < 1e-5: for j in range(i+1,len(eigs)): if C.verbosity >= 2: if abs(eigs[i]) < 1e-5 and abs(eigs[j]) < 1e-5: print('Fold-Fold point found in Hopf!\n') elif abs(imag(eigs[j])) < 1e-5 and abs(real(eigs[i]) + real(eigs[j])) < 1e-5: print('Neutral saddle found!\n') elif abs(real(eigs[i])) < 1e-5: for j in range(i+1, len(eigs)): if abs(real(eigs[j])) < 1e-5 and abs(real(eigs[i]) - real(eigs[j])) < 1e-5: found = True w = abs(imag(eigs[i])) if imag(eigs[i]) > 0: p = conjugate(LV[:,j]/linalg.norm(LV[:,j])) q = RV[:,i]/linalg.norm(RV[:,i]) else: p = conjugate(LV[:,i]/linalg.norm(LV[:,i])) q = RV[:,j]/linalg.norm(RV[:,j]) if not found: del self.found[-1] return False direc = conjugate(1/matrixmultiply(conjugate(p),q)) p = direc*p # Alternate way to compute 1st lyapunov coefficient (from Kuznetsov [4]) #print (1./(w*w))*real(1j*matrixmultiply(conjugate(p),b1)*matrixmultiply(conjugate(p),b3) + \ # w*matrixmultiply(conjugate(p),trilinearform(D,q,q,conjugate(q)))) self.found[-1].w = w self.found[-1].l1 = firstlyapunov(X, C.CorrFunc.sysfunc, w, J_coords=J_coords, p=p, q=q, check=(C.verbosity==2)) self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('w = ' + repr(self.found[i].w)) strlist.append('l1 = ' + repr(self.found[i].l1)) BifPoint.info(self, C, ind, strlist) # Discrete maps class LPCPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'LPC', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.sysfunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) self.found[-1].eigs = W self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) strlist.append('Test function #2: ' + repr(self.testfuncs[1](X,V)[0])) BifPoint.info(self, C, ind, strlist) class PDPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'PD', stop=stop) def process(self, X, V, C): """Do I need to compute the branch, or will it always be in the direction of freepar = constant?""" BifPoint.process(self, X, V, C) F = DiscreteMap(C.sysfunc, period=2*C.sysfunc.period) FP = FixedPointMap(F) J_coords = FP.jac(X, C.coords) J_params = FP.jac(X, C.params) # Locate branch of double period map W, VL = linalg.eig(J_coords, left=1, right=0) ind = argsort([abs(eig) for eig in W])[0] psi = real(VL[:,ind]) A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = argsort([abs(eig) for eig in W])[0] V1 = real(VR[:,W0]) H = FP.hess(X, C.coords+C.params, C.coords+C.params) c11 = matrixmultiply(psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) c12 = matrixmultiply(psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) c22 = matrixmultiply(psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) beta = 1 alpha = -1*c22/(2*c12) V1 = alpha*V + beta*V1 V1 /= linalg.norm(V1) J_coords = C.sysfunc.jac(X, C.coords) W = linalg.eig(J_coords, right=0) self.found[-1].eigs = W self.found[-1].branch_period = 2*C.sysfunc.period self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('Period doubling branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ tocoords(C, self.found[i].branch)))) BifPoint.info(self, C, ind, strlist) class NSPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'NS', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.sysfunc.jac(X, C.coords) eigs, VL, VR = linalg.eig(J_coords, left=1, right=1) # Check for nonreal multipliers found = False for i in range(len(eigs)): for j in range(i+1,len(eigs)): if abs(imag(eigs[i])) > 1e-10 and \ abs(imag(eigs[j])) > 1e-10 and \ abs(eigs[i]*eigs[j] - 1) < 1e-5: found = True if not found: del self.found[-1] return False self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind)
32.638444
120
0.534179
3,957
28,526
3.787718
0.084913
0.043835
0.026688
0.053776
0.776288
0.747331
0.726314
0.705498
0.698025
0.685015
0
0.022658
0.309963
28,526
873
121
32.67583
0.738773
0.095071
0
0.700516
0
0
0.02841
0.001015
0
0
0
0
0
1
0.091222
false
0
0.013769
0
0.177281
0.048193
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
53577342e6db4b3427645ab2e05fe5d3ca60a280
118
py
Python
config.py
tiuD/cross-prom
8b987138ec32e0ac64ca6ffe13d0e1cd0d18aef3
[ "MIT" ]
null
null
null
config.py
tiuD/cross-prom
8b987138ec32e0ac64ca6ffe13d0e1cd0d18aef3
[ "MIT" ]
null
null
null
config.py
tiuD/cross-prom
8b987138ec32e0ac64ca6ffe13d0e1cd0d18aef3
[ "MIT" ]
null
null
null
TOKEN = "1876415562:AAEsX_c9k3Fot2IT0BYRqkCCQ5vFEHQDLDQ" CHAT_ID = [957539786] # e.g. [1234567, 2233445, 3466123...]
29.5
59
0.754237
12
118
7.25
1
0
0
0
0
0
0
0
0
0
0
0.424528
0.101695
118
3
60
39.333333
0.396226
0.29661
0
0
0
0
0.567901
0.567901
0
0
0
0
0
1
0
false
0
0
0
0
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f408463fbafd0299afebe10a70bf543c07547fe8
4,541
py
Python
utils/data/dataset_catalog.py
rs9899/Parsing-R-CNN
a0c9ed8850abe740eedf8bfc6e1577cc0aa3fc7b
[ "MIT" ]
289
2018-10-25T09:42:57.000Z
2022-03-30T08:31:50.000Z
utils/data/dataset_catalog.py
qzane/Parsing-R-CNN
8c4d940dcd322bf7a8671f8b0faaabb3259bd384
[ "MIT" ]
28
2019-01-07T02:39:49.000Z
2022-01-25T08:54:36.000Z
utils/data/dataset_catalog.py
qzane/Parsing-R-CNN
8c4d940dcd322bf7a8671f8b0faaabb3259bd384
[ "MIT" ]
44
2018-12-20T07:36:46.000Z
2022-03-16T14:30:20.000Z
import os.path as osp # Root directory of project ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Path to data dir _DATA_DIR = osp.abspath(osp.join(ROOT_DIR, 'data')) # Required dataset entry keys _IM_DIR = 'image_directory' _ANN_FN = 'annotation_file' # Available datasets COMMON_DATASETS = { 'coco_2017_train': { _IM_DIR: _DATA_DIR + '/coco/images/train2017', _ANN_FN: _DATA_DIR + '/coco/annotations/instances_train2017.json', }, 'coco_2017_val': { _IM_DIR: _DATA_DIR + '/coco/images/val2017', _ANN_FN: _DATA_DIR + '/coco/annotations/instances_val2017.json', }, 'coco_2017_test': { _IM_DIR: _DATA_DIR + '/coco/images/test2017', _ANN_FN: _DATA_DIR + '/coco/annotations/image_info_test2017.json', }, 'coco_2017_test-dev': { _IM_DIR: _DATA_DIR + '/coco/images/test2017', _ANN_FN: _DATA_DIR + '/coco/annotations/image_info_test-dev2017.json', }, 'keypoints_coco_2017_train': { _IM_DIR: _DATA_DIR + '/coco/images/train2017', _ANN_FN: _DATA_DIR + '/coco/annotations/person_keypoints_train2017.json' }, 'keypoints_coco_2017_val': { _IM_DIR: _DATA_DIR + '/coco/images/val2017', _ANN_FN: _DATA_DIR + '/coco/annotations/person_keypoints_val2017.json' }, 'keypoints_coco_2017_test': { _IM_DIR: _DATA_DIR + '/coco/images/test2017', _ANN_FN: _DATA_DIR + '/coco/annotations/image_info_test2017.json' }, 'keypoints_coco_2017_test-dev': { _IM_DIR: _DATA_DIR + '/coco/images/test2017', _ANN_FN: _DATA_DIR + '/coco/annotations/image_info_test-dev2017.json', }, 'dense_coco_2017_train': { _IM_DIR: _DATA_DIR + '/coco/images/train2017', _ANN_FN: _DATA_DIR + '/coco/annotations/DensePoseData/densepose_coco_train2017.json', }, 'dense_coco_2017_val': { _IM_DIR: _DATA_DIR + '/coco/images/val2017', _ANN_FN: _DATA_DIR + '/coco/annotations/DensePoseData/densepose_coco_val2017.json', }, 'dense_coco_2017_test': { _IM_DIR: _DATA_DIR + '/coco/images/test2017', _ANN_FN: _DATA_DIR + '/coco/annotations/DensePoseData/densepose_coco_test.json', }, 'CIHP_train': { # new addition by wzh _IM_DIR: _DATA_DIR + '/CIHP/train_img', _ANN_FN: _DATA_DIR + '/CIHP/annotations/CIHP_train.json', }, 'CIHP_val': { # new addition by wzh _IM_DIR: _DATA_DIR + '/CIHP/val_img', _ANN_FN: _DATA_DIR + '/CIHP/annotations/CIHP_val.json', }, 'CIHP_test': { # new addition by wzh _IM_DIR: _DATA_DIR + '/CIHP/test_img', _ANN_FN: _DATA_DIR + '/CIHP/annotations/CIHP_test.json', }, 'MHP-v2_train': { # new addition by wzh _IM_DIR: _DATA_DIR + '/MHP-v2/train_img', _ANN_FN: _DATA_DIR + '/MHP-v2/annotations/MHP-v2_train.json', }, 'MHP-v2_val': { # new addition by wzh _IM_DIR: _DATA_DIR + '/MHP-v2/val_img', _ANN_FN: _DATA_DIR + '/MHP-v2/annotations/MHP-v2_val.json', }, 'MHP-v2_test': { # new addition by wzh _IM_DIR: _DATA_DIR + '/MHP-v2/test_img', _ANN_FN: _DATA_DIR + '/MHP-v2/annotations/MHP-v2_test_all.json', }, 'MHP-v2_test_inter_top10': { # new addition by wzh _IM_DIR: _DATA_DIR + '/MHP-v2/test_img', _ANN_FN: _DATA_DIR + '/MHP-v2/annotations/MHP-v2_test_inter_top10.json', }, 'MHP-v2_test_inter_top20': { # new addition by wzh _IM_DIR: _DATA_DIR + '/MHP-v2/test_img', _ANN_FN: _DATA_DIR + '/MHP-v2/annotations/MHP-v2_test_inter_top20.json', }, 'PASCAL-Person-Part_train': { # new addition by soeaver _IM_DIR: _DATA_DIR + '/PASCAL-Person-Part/train_img', _ANN_FN: _DATA_DIR + '/PASCAL-Person-Part/annotations/pascal_person_part_train.json', }, 'PASCAL-Person-Part_test': { # new addition by soeaver _IM_DIR: _DATA_DIR + '/PASCAL-Person-Part/test_img', _ANN_FN: _DATA_DIR + '/PASCAL-Person-Part/annotations/pascal_person_part_test.json', } }
31.978873
88
0.580269
544
4,541
4.338235
0.115809
0.130508
0.09322
0.10678
0.822458
0.772458
0.760169
0.752542
0.69661
0.612712
0
0.048796
0.29597
4,541
141
89
32.205674
0.689396
0.065404
0
0.43609
0
0
0.419957
0.330338
0
0
0
0
0
1
0
false
0
0.007519
0
0.007519
0
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f4283fe6df2818523658c305534af2e5905a9186
180
py
Python
6/4.py
Chyroc/homework
b1ee8e9629b4dbb6c46a550d710157702d57b00b
[ "MIT" ]
null
null
null
6/4.py
Chyroc/homework
b1ee8e9629b4dbb6c46a550d710157702d57b00b
[ "MIT" ]
1
2018-05-23T02:12:16.000Z
2018-05-23T02:12:31.000Z
6/4.py
Chyroc/homework
b1ee8e9629b4dbb6c46a550d710157702d57b00b
[ "MIT" ]
null
null
null
import re def remove_not_alpha_num(string): return re.sub('[^0-9a-zA-Z]+', '', string) if __name__ == '__main__': print(remove_not_alpha_num('a000 aa-b') == 'a000aab')
18
57
0.65
28
180
3.678571
0.785714
0.174757
0.271845
0.330097
0
0
0
0
0
0
0
0.052632
0.155556
180
9
58
20
0.625
0
0
0
0
0
0.205556
0
0
0
0
0
0
1
0.2
false
0
0.2
0.2
0.6
0.2
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
1
0
0
0
5
f44062d81d380655736648a227bdbe096d8db999
110
py
Python
mailing/urls.py
ananyamalik/Railway-Concession-Portal
295264ccb50bc4750bf0a749c8477384407d51ad
[ "MIT" ]
null
null
null
mailing/urls.py
ananyamalik/Railway-Concession-Portal
295264ccb50bc4750bf0a749c8477384407d51ad
[ "MIT" ]
10
2020-02-11T23:58:12.000Z
2022-03-11T23:43:58.000Z
mailing/urls.py
ananyamalik/Railway-Concession-Portal
295264ccb50bc4750bf0a749c8477384407d51ad
[ "MIT" ]
1
2019-03-26T10:43:34.000Z
2019-03-26T10:43:34.000Z
from django.urls import path from .views import ( student_list, student_add, student_profile,student_delete )
36.666667
80
0.827273
16
110
5.4375
0.6875
0
0
0
0
0
0
0
0
0
0
0
0.109091
110
2
81
55
0.887755
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
f442ad3274e1d03978bf00cca2923623d11978bb
8,842
py
Python
pomodorr/frames/tests/test_consumers.py
kamil559/pomodorr
232e6e98ff3481561dd1235794b3960066713210
[ "MIT" ]
null
null
null
pomodorr/frames/tests/test_consumers.py
kamil559/pomodorr
232e6e98ff3481561dd1235794b3960066713210
[ "MIT" ]
15
2020-04-11T18:30:57.000Z
2020-07-05T09:37:43.000Z
pomodorr/frames/tests/test_consumers.py
kamil559/pomodorr
232e6e98ff3481561dd1235794b3960066713210
[ "MIT" ]
null
null
null
import json import pytest from channels.db import database_sync_to_async from channels.testing import WebsocketCommunicator from pytest_lazyfixture import lazy_fixture from pomodorr.frames import statuses from pomodorr.frames.models import DateFrame from pomodorr.frames.routing import frames_application from pomodorr.frames.selectors.date_frame_selector import get_finished_date_frames_for_task pytestmark = [pytest.mark.django_db(transaction=True), pytest.mark.asyncio] async def test_connect_websocket(task_instance, active_user): communicator = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator.scope['user'] = active_user connected, _ = await communicator.connect() assert connected await communicator.disconnect() @pytest.mark.parametrize( 'tested_frame_type', [DateFrame.pomodoro_type, DateFrame.break_type, DateFrame.pause_type] ) async def test_start_and_finish_date_frame(tested_frame_type, task_instance, active_user): communicator = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator.scope['user'] = active_user await communicator.connect() assert await database_sync_to_async(task_instance.frames.exists)() is False await communicator.send_json_to({ 'type': 'frame_start', 'frame_type': tested_frame_type }) response = await communicator.receive_json_from() assert response['level'] == statuses.MESSAGE_LEVEL_CHOICES[statuses.LEVEL_TYPE_SUCCESS] assert response['code'] == statuses.LEVEL_TYPE_SUCCESS assert response['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[statuses.FRAME_ACTION_STARTED] started_date_frame_id = response['data']['date_frame_id'] assert started_date_frame_id is not None assert await database_sync_to_async(task_instance.frames.exists)() await communicator.send_json_to({ 'type': 'frame_finish', 'date_frame_id': started_date_frame_id }) response = await communicator.receive_json_from() assert response['level'] == statuses.MESSAGE_LEVEL_CHOICES[statuses.LEVEL_TYPE_SUCCESS] assert response['code'] == statuses.LEVEL_TYPE_SUCCESS assert response['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[statuses.FRAME_ACTION_FINISHED] assert await database_sync_to_async(get_finished_date_frames_for_task(task=task_instance).exists)() await communicator.disconnect() async def test_start_and_finish_pomodoro_with_pause_inside(task_instance, active_user): communicator = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator.scope['user'] = active_user await communicator.connect() await communicator.send_json_to({ 'type': 'frame_start', 'frame_type': DateFrame.pomodoro_type }) pomodoro_started_response = await communicator.receive_json_from() assert pomodoro_started_response['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[statuses.FRAME_ACTION_STARTED] started_pomodoro_id = pomodoro_started_response['data']['date_frame_id'] await communicator.send_json_to({ 'type': 'frame_start', 'frame_type': DateFrame.pause_type }) pause_started_response = await communicator.receive_json_from() assert pause_started_response['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[statuses.FRAME_ACTION_STARTED] pomodoro = await database_sync_to_async(DateFrame.objects.get)(id=started_pomodoro_id) assert pomodoro.end is None # check if pomodoro hasn't been stopped by starting a pause date frame started_pause_id = pause_started_response['data']['date_frame_id'] pause = await database_sync_to_async(DateFrame.objects.get)(id=started_pause_id) assert pause.end is None await communicator.send_json_to({ 'type': 'frame_finish', 'date_frame_id': started_pause_id }) pause_finished_response = await communicator.receive_json_from() assert pause_finished_response['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[statuses.FRAME_ACTION_FINISHED] await database_sync_to_async(pause.refresh_from_db)() assert pause.end is not None # pause should be finished here await database_sync_to_async(pomodoro.refresh_from_db)() assert pomodoro.end is None await communicator.send_json_to({ 'type': 'frame_finish', 'date_frame_id': started_pomodoro_id }) pomodoro_finished_response = await communicator.receive_json_from() await database_sync_to_async(pomodoro.refresh_from_db)() assert pomodoro.end is not None # Only now the pomodoro is expected to be finished assert pomodoro_finished_response['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[statuses.FRAME_ACTION_FINISHED] assert await database_sync_to_async(get_finished_date_frames_for_task(task=task_instance).count)() == 2 await communicator.disconnect() @pytest.mark.parametrize( 'tested_frame_type', [DateFrame.pomodoro_type, DateFrame.break_type, DateFrame.pause_type] ) async def test_channel_group_separation(tested_frame_type, active_user, task_instance, task_instance_in_second_project): communicator_1 = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator_2 = WebsocketCommunicator(frames_application, f'date_frames/{task_instance_in_second_project.id}/') communicator_1.scope['user'] = active_user communicator_2.scope['user'] = active_user communicator_1_connected, _ = await communicator_1.connect() communicator_2_connected, _ = await communicator_2.connect() assert communicator_1_connected assert communicator_2_connected assert await communicator_1.receive_nothing() assert await communicator_2.receive_nothing() await communicator_1.send_json_to({ 'type': 'frame_start', 'frame_type': tested_frame_type }) assert await communicator_1.receive_nothing() is False assert await communicator_2.receive_nothing() await communicator_1.disconnect() await communicator_2.disconnect() @pytest.mark.parametrize( 'tested_frame_type', [DateFrame.pomodoro_type, DateFrame.break_type, DateFrame.pause_type] ) async def test_connection_discarded_before_second_connection_established(tested_frame_type, active_user, task_instance): communicator_1 = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator_2 = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator_1.scope['user'] = active_user communicator_2.scope['user'] = active_user communicator_1_connected, _ = await communicator_1.connect() assert communicator_1_connected communicator_2_connected, _ = await communicator_2.connect() assert communicator_2_connected connection_close_response = await communicator_1.receive_output() assert connection_close_response['type'] == 'websocket.close' assert await communicator_1.receive_nothing() assert await communicator_2.receive_nothing() await communicator_2.send_json_to({ 'type': 'frame_start', 'frame_type': tested_frame_type }) assert await communicator_1.receive_nothing() assert await communicator_2.receive_nothing() is False await communicator_2.disconnect() @pytest.mark.parametrize( 'tested_frame_type', [ lazy_fixture('pomodoro_in_progress'), lazy_fixture('pause_in_progress') ] ) async def test_date_frame_force_finished_and_client_notified(tested_frame_type, active_user, task_instance): communicator_1 = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator_2 = WebsocketCommunicator(frames_application, f'date_frames/{task_instance.id}/') communicator_1.scope['user'] = active_user communicator_2.scope['user'] = active_user await communicator_1.connect() await communicator_2.connect() notification_message = await communicator_1.receive_output() assert notification_message['type'] == 'websocket.send' assert json.loads(notification_message['text'])['action'] == statuses.MESSAGE_FRAME_ACTION_CHOICES[ statuses.FRAME_ACTION_FORCE_TERMINATED] connection_close_response = await communicator_1.receive_output() assert connection_close_response['type'] == 'websocket.close' await communicator_1.disconnect() await communicator_2.disconnect() async def test_channel_group_permission(task_instance_for_random_project, active_user): communicator = WebsocketCommunicator(frames_application, f'date_frames/{task_instance_for_random_project.id}/') communicator.scope['user'] = active_user connected, _ = await communicator.connect() assert connected is False
39.123894
120
0.774259
1,078
8,842
5.959184
0.1141
0.113792
0.036426
0.029577
0.808842
0.767746
0.739415
0.724938
0.689446
0.651308
0
0.005914
0.139448
8,842
225
121
39.297778
0.838349
0.016625
0
0.576687
0
0
0.100679
0.039926
0
0
0
0
0.233129
1
0
false
0
0.055215
0
0.055215
0
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f4458a3941886161e8e7b509e9445b16e1094e76
24
py
Python
docker_squash/version.py
pombredanne/docker-scripts
ecee9f921b22cd44943197635875572185dd015d
[ "MIT" ]
513
2016-04-04T21:44:14.000Z
2022-03-27T06:18:26.000Z
docker_squash/version.py
pombredanne/docker-scripts
ecee9f921b22cd44943197635875572185dd015d
[ "MIT" ]
106
2016-04-01T11:53:20.000Z
2022-03-31T00:35:31.000Z
docker_squash/version.py
pombredanne/docker-scripts
ecee9f921b22cd44943197635875572185dd015d
[ "MIT" ]
75
2016-05-11T01:08:47.000Z
2022-03-25T01:20:06.000Z
version = "1.0.10.dev0"
12
23
0.625
5
24
3
1
0
0
0
0
0
0
0
0
0
0
0.238095
0.125
24
1
24
24
0.47619
0
0
0
0
0
0.458333
0
0
0
0
0
0
1
0
false
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f45a0afb4a750100d6616bb61de6015d31db9869
25
py
Python
heareval/__init__.py
neuralaudio/hear-eval-kit
f92119592954544dfb417f8e9aea21eadb4a65d0
[ "Apache-2.0" ]
24
2021-07-26T21:21:46.000Z
2022-03-30T08:10:13.000Z
heareval/__init__.py
neuralaudio/hear-eval-kit
f92119592954544dfb417f8e9aea21eadb4a65d0
[ "Apache-2.0" ]
196
2021-07-26T17:58:23.000Z
2022-01-26T17:40:25.000Z
heareval/__init__.py
neuralaudio/hear-eval-kit
f92119592954544dfb417f8e9aea21eadb4a65d0
[ "Apache-2.0" ]
3
2021-08-10T13:12:53.000Z
2022-03-19T05:00:50.000Z
__version__ = "2021.0.6"
12.5
24
0.68
4
25
3.25
1
0
0
0
0
0
0
0
0
0
0
0.272727
0.12
25
1
25
25
0.318182
0
0
0
0
0
0.32
0
0
0
0
0
0
1
0
false
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f45caefa61ce261896189f11de67dd4621b4cff1
44
py
Python
code/abc057_a_02.py
KoyanagiHitoshi/AtCoder
731892543769b5df15254e1f32b756190378d292
[ "MIT" ]
3
2019-08-16T16:55:48.000Z
2021-04-11T10:21:40.000Z
code/abc057_a_02.py
KoyanagiHitoshi/AtCoder
731892543769b5df15254e1f32b756190378d292
[ "MIT" ]
null
null
null
code/abc057_a_02.py
KoyanagiHitoshi/AtCoder
731892543769b5df15254e1f32b756190378d292
[ "MIT" ]
null
null
null
a,b=map(int,input().split()) print((a+b)%24)
22
28
0.613636
10
44
2.7
0.8
0.148148
0
0
0
0
0
0
0
0
0
0.046512
0.022727
44
2
29
22
0.581395
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0
0
0
0.5
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
5
be483eb33f37e53a2e55abe5acc6cd622141fb6c
200
py
Python
src/game/exceptions.py
UnBParadigmas/2020.1_G2_SMA_DarwInPython
34cdc979a95f827f230bd4f13442f6c67d81ba2b
[ "MIT" ]
null
null
null
src/game/exceptions.py
UnBParadigmas/2020.1_G2_SMA_DarwInPython
34cdc979a95f827f230bd4f13442f6c67d81ba2b
[ "MIT" ]
1
2020-11-20T10:32:49.000Z
2020-11-20T10:32:49.000Z
src/game/exceptions.py
UnBParadigmas/2020.1_G2_SMA_DarwInPython
34cdc979a95f827f230bd4f13442f6c67d81ba2b
[ "MIT" ]
null
null
null
class InvalidMovementException(Exception): pass class InvalidMovementTargetException(InvalidMovementException): pass class InvalidMovimentOriginException(InvalidMovementException): pass
22.222222
63
0.84
12
200
14
0.5
0.107143
0
0
0
0
0
0
0
0
0
0
0.115
200
9
64
22.222222
0.949153
0
0
0.5
0
0
0
0
0
0
0
0
0
1
0
true
0.5
0
0
0.5
0
1
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
0
0
0
5
be629e4dd47b9de924dd51caddb573587b68e29b
268
py
Python
cracking_the_coding_interview_qs/10.4/find_x_in_listy_test.py
angelusualle/algorithms
86286a49db2a755bc57330cb455bcbd8241ea6be
[ "Apache-2.0" ]
null
null
null
cracking_the_coding_interview_qs/10.4/find_x_in_listy_test.py
angelusualle/algorithms
86286a49db2a755bc57330cb455bcbd8241ea6be
[ "Apache-2.0" ]
null
null
null
cracking_the_coding_interview_qs/10.4/find_x_in_listy_test.py
angelusualle/algorithms
86286a49db2a755bc57330cb455bcbd8241ea6be
[ "Apache-2.0" ]
null
null
null
import unittest from find_x_in_listy import find_x_in_listy, Listy class Test_Case_Find_X_In_Listy(unittest.TestCase): def test_case_find_x_in_listy(self): listy = Listy(list(range(0, 1*10**8))) self.assertEqual(find_x_in_listy(listy, 5678), 5678)
38.285714
60
0.761194
47
268
3.93617
0.446809
0.135135
0.189189
0.324324
0.4
0.216216
0
0
0
0
0
0.056522
0.141791
268
7
60
38.285714
0.747826
0
0
0
0
0
0
0
0
0
0
0
0.166667
1
0.166667
false
0
0.333333
0
0.666667
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
be7fa8fa9510f2347bc60a9ff146e619c5f6dc1c
11,457
py
Python
homeschool/students/tests/test_forms.py
brandonmcclure/homeschool
6ba2e35014740e952222535e9492cde0d41338b4
[ "MIT" ]
null
null
null
homeschool/students/tests/test_forms.py
brandonmcclure/homeschool
6ba2e35014740e952222535e9492cde0d41338b4
[ "MIT" ]
null
null
null
homeschool/students/tests/test_forms.py
brandonmcclure/homeschool
6ba2e35014740e952222535e9492cde0d41338b4
[ "MIT" ]
null
null
null
import datetime from homeschool.courses.tests.factories import ( CourseFactory, CourseTaskFactory, GradedWorkFactory, ) from homeschool.schools.tests.factories import GradeLevelFactory from homeschool.students.forms import CourseworkForm, EnrollmentForm, GradeForm from homeschool.students.models import Coursework, Grade from homeschool.students.tests.factories import ( CourseworkFactory, EnrollmentFactory, GradeFactory, StudentFactory, ) from homeschool.test import TestCase class TestCourseworkForm(TestCase): def test_is_valid(self): """The coursework validates.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) data = { "student": str(student.id), "course_task": str(course_task.id), "completed_date": str(grade_level.school_year.start_date), } form = CourseworkForm(data=data) is_valid = form.is_valid() assert is_valid def test_student_can_create_coursework(self): """The student is enrolled in a course that contains the task.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) data = { "student": str(student.id), "course_task": str(course_task.id), "completed_date": str(grade_level.school_year.start_date), } form = CourseworkForm(data=data) is_valid = form.is_valid() assert not is_valid assert form.non_field_errors() == [ "The student is not enrolled in this course." ] def test_save_new_coursework(self): """A new coursework is created for a student and task.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) data = { "student": str(student.id), "course_task": str(course_task.id), "completed_date": str(grade_level.school_year.start_date), } form = CourseworkForm(data=data) form.is_valid() form.save() assert ( Coursework.objects.filter(student=student, course_task=course_task).count() == 1 ) def test_save_existing_coursework(self): """A new coursework is created for a student and task.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) CourseworkFactory(student=student, course_task=course_task) data = { "student": str(student.id), "course_task": str(course_task.id), "completed_date": str(grade_level.school_year.start_date), } form = CourseworkForm(data=data) form.is_valid() form.save() assert ( Coursework.objects.filter(student=student, course_task=course_task).count() == 1 ) def test_save_deletes_coursework(self): """A blank completed date deletes an existing coursework.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) CourseworkFactory(student=student, course_task=course_task) data = { "student": str(student.id), "course_task": str(course_task.id), } form = CourseworkForm(data=data) form.is_valid() form.save() assert ( Coursework.objects.filter(student=student, course_task=course_task).count() == 0 ) def test_completed_date_outside_school_year(self): """The completed data must be in the school year.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) data = { "student": str(student.id), "course_task": str(course_task.id), "completed_date": str( grade_level.school_year.start_date - datetime.timedelta(days=1) ), } form = CourseworkForm(data=data) is_valid = form.is_valid() assert not is_valid assert form.non_field_errors() == [ "The completed date must be in the school year." ] def test_invalid_course_task(self): """An invalid course task is an error.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) CourseTaskFactory(course=course) data = { "student": str(student.id), "course_task": "0", "completed_date": str(grade_level.school_year.start_date), } form = CourseworkForm(data=data) is_valid = form.is_valid() assert not is_valid def test_invalid_completed_date(self): """An invalid completed date is an error.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) course_task = CourseTaskFactory(course=course) data = { "student": str(student.id), "course_task": str(course_task.id), "completed_date": "boom", } form = CourseworkForm(data=data) is_valid = form.is_valid() assert not is_valid class TestEnrollmentForm(TestCase): def test_students_only_enroll_in_one_grade_level_per_year(self): """A student can only be enrolled in a single grade level in a school year.""" user = self.make_user() enrollment = EnrollmentFactory( student__school=user.school, grade_level__school_year__school=user.school ) another_grade_level = GradeLevelFactory( school_year=enrollment.grade_level.school_year ) data = { "student": str(enrollment.student.id), "grade_level": str(another_grade_level.id), } form = EnrollmentForm(user=user, data=data) is_valid = form.is_valid() assert not is_valid assert ( "A student may not be enrolled in multiple grade levels in a school year. " f"{enrollment.student} is enrolled in {enrollment.grade_level}." in form.non_field_errors() ) def test_no_grade_level(self): """A missing grade level raises a validation error.""" user = self.make_user() school = user.school enrollment = EnrollmentFactory( student__school=school, grade_level__school_year__school=school ) data = {"student": str(enrollment.student.id), "grade_level": "0"} form = EnrollmentForm(user=user, data=data) is_valid = form.is_valid() assert not is_valid assert "You need to select a grade level." in form.non_field_errors() class TestGradeForm(TestCase): def test_is_valid(self): """The new grade validates.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) graded_work = GradedWorkFactory(course_task__course=course) data = { "student": str(student.id), "graded_work": str(graded_work.id), "score": "100", } form = GradeForm(data=data) is_valid = form.is_valid() assert is_valid def test_invalid_graded_work(self): """An invalid graded work is an error.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) GradedWorkFactory(course_task__course=course) data = {"student": str(student.id), "graded_work": "0", "score": "100"} form = GradeForm(data=data) is_valid = form.is_valid() assert not is_valid def test_save(self): """The form creates a new grade.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) graded_work = GradedWorkFactory(course_task__course=course) data = { "student": str(student.id), "graded_work": str(graded_work.id), "score": "100", } form = GradeForm(data=data) form.is_valid() form.save() assert ( Grade.objects.filter( student=student, graded_work=graded_work, score=100 ).count() == 1 ) def test_save_update(self): """The form updates a grade.""" user = self.make_user() student = StudentFactory(school=user.school) grade_level = GradeLevelFactory(school_year__school=user.school) EnrollmentFactory(student=student, grade_level=grade_level) course = CourseFactory(grade_levels=[grade_level]) graded_work = GradedWorkFactory(course_task__course=course) GradeFactory(student=student, graded_work=graded_work) data = { "student": str(student.id), "graded_work": str(graded_work.id), "score": "100", } form = GradeForm(data=data) form.is_valid() form.save() assert ( Grade.objects.filter(student=student, graded_work=graded_work).count() == 1 )
36.141956
87
0.639696
1,251
11,457
5.614708
0.089528
0.09254
0.061503
0.031891
0.797978
0.78246
0.758827
0.742027
0.729784
0.729784
0
0.00284
0.262372
11,457
316
88
36.256329
0.828304
0.052806
0
0.679688
0
0
0.059827
0.002319
0
0
0
0
0.070313
1
0.054688
false
0
0.027344
0
0.09375
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
be98084b654d84cf6a197790eaa2f280fb68a68e
800
py
Python
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/_api/v2/compat/v2/train/experimental/__init__.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
2
2020-09-30T00:11:09.000Z
2021-10-04T13:00:38.000Z
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/_api/v2/compat/v2/train/experimental/__init__.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
null
null
null
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/_api/v2/compat/v2/train/experimental/__init__.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
1
2021-01-28T01:57:41.000Z
2021-01-28T01:57:41.000Z
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Public API for tf.train.experimental namespace. """ from __future__ import print_function as _print_function import sys as _sys from tensorflow.python.training.experimental.loss_scale import DynamicLossScale from tensorflow.python.training.experimental.loss_scale import FixedLossScale from tensorflow.python.training.experimental.loss_scale import LossScale from tensorflow.python.training.experimental.mixed_precision import disable_mixed_precision_graph_rewrite from tensorflow.python.training.experimental.mixed_precision import enable_mixed_precision_graph_rewrite from tensorflow.python.training.tracking.python_state import PythonState del _print_function
44.444444
105
0.86875
104
800
6.432692
0.442308
0.167414
0.179372
0.251121
0.54559
0.54559
0.54559
0.54559
0
0
0
0
0.075
800
17
106
47.058824
0.904054
0.2175
0
0
1
0
0
0
0
0
0
0
0
1
0
true
0
0.888889
0
0.888889
0.222222
0
0
0
null
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
beb77481d7d9ef64134079c15cf78aedfbcf66f2
187
py
Python
RainIt/rain_it/ric/Procedure.py
luisgepeto/RainItPi
47cb7228e9c584c3c4489ebc78abf6de2096b770
[ "MIT" ]
null
null
null
RainIt/rain_it/ric/Procedure.py
luisgepeto/RainItPi
47cb7228e9c584c3c4489ebc78abf6de2096b770
[ "MIT" ]
null
null
null
RainIt/rain_it/ric/Procedure.py
luisgepeto/RainItPi
47cb7228e9c584c3c4489ebc78abf6de2096b770
[ "MIT" ]
null
null
null
from ric.RainItComposite import RainItComposite class Procedure(RainItComposite): def __init__(self): super().__init__() def get_pickle_form(self): return self
18.7
47
0.705882
20
187
6.1
0.7
0
0
0
0
0
0
0
0
0
0
0
0.213904
187
9
48
20.777778
0.829932
0
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
false
0
0.166667
0.166667
0.833333
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
5
fe2bf5d430a026df243c522eca3e9b1d054d0492
45
py
Python
remediar/modules/http/__init__.py
fabaff/remediar
014d7733b00cd40a45881c2729c04df5584476e7
[ "Apache-2.0" ]
null
null
null
remediar/modules/http/__init__.py
fabaff/remediar
014d7733b00cd40a45881c2729c04df5584476e7
[ "Apache-2.0" ]
null
null
null
remediar/modules/http/__init__.py
fabaff/remediar
014d7733b00cd40a45881c2729c04df5584476e7
[ "Apache-2.0" ]
null
null
null
"""Support for HTTP or web server issues."""
22.5
44
0.688889
7
45
4.428571
1
0
0
0
0
0
0
0
0
0
0
0
0.155556
45
1
45
45
0.815789
0.844444
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
fe4a3921bc3a55c6c61a10f07f322ae6a1bc443a
12,719
py
Python
pay-api/tests/unit/api/test_fee.py
saravanpa-aot/sbc-pay
fb9f61b99e506e43280bc69531ee107cc12cd92d
[ "Apache-2.0" ]
null
null
null
pay-api/tests/unit/api/test_fee.py
saravanpa-aot/sbc-pay
fb9f61b99e506e43280bc69531ee107cc12cd92d
[ "Apache-2.0" ]
null
null
null
pay-api/tests/unit/api/test_fee.py
saravanpa-aot/sbc-pay
fb9f61b99e506e43280bc69531ee107cc12cd92d
[ "Apache-2.0" ]
5
2019-03-01T01:12:12.000Z
2019-07-08T16:33:47.000Z
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests to assure the fees end-point. Test-Suite to ensure that the /fees endpoint is working as expected. """ import json from datetime import date, timedelta from pay_api.models import CorpType, FeeCode, FeeSchedule, FilingType from pay_api.schemas import utils as schema_utils from pay_api.utils.enums import Role from tests.utilities.base_test import get_claims, get_gov_account_payload, token_header def test_fees_with_corp_type_and_filing_type(session, client, jwt, app): """Assert that the endpoint returns 200.""" token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] def test_fees_with_corp_type_and_filing_type_with_valid_start_date(session, client, jwt, app): """Assert that the endpoint returns 200.""" # Insert a record first and then query for it token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' now = date.today() factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100), now - timedelta(1)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?valid_date={now}', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] assert not schema_utils.validate(rv.json, 'problem')[0] def test_fees_with_corp_type_and_filing_type_with_invalid_start_date(session, client, jwt, app): """Assert that the endpoint returns 400.""" # Insert a record first and then query for it token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' now = date.today() factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100), now + timedelta(1)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?valid_date={now}', headers=headers) assert rv.status_code == 400 assert schema_utils.validate(rv.json, 'problem')[0] assert not schema_utils.validate(rv.json, 'fees')[0] def test_fees_with_corp_type_and_filing_type_with_valid_end_date(session, client, jwt, app): """Assert that the endpoint returns 200.""" # Insert a record first and then query for it token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' now = date.today() factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100), now - timedelta(1), now) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?valid_date={now}', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] def test_fees_with_corp_type_and_filing_type_with_invalid_end_date(session, client, jwt, app): """Assert that the endpoint returns 400.""" # Insert a record first and then query for it token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' now = date.today() factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100), now - timedelta(2), now - timedelta(1)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?valid_date={now}', headers=headers) assert rv.status_code == 400 assert schema_utils.validate(rv.json, 'problem')[0] def test_calculate_fees_with_waive_fees(session, client, jwt, app): """Assert that the endpoint returns 201.""" token = jwt.create_jwt(get_claims(role='staff'), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?waiveFees=true', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] assert rv.json.get('filingFees') == 0 def test_calculate_fees_with_waive_fees_unauthorized(session, client, jwt, app): """Assert that the endpoint returns 201.""" token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?waiveFees=true', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] assert rv.json.get('filingFees') == 100 def test_fees_with_quantity(session, client, jwt, app): """Assert that the endpoint returns 200.""" token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}?quantity=10', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] def test_calculate_fees_for_service_fee(session, client, jwt, app): """Assert that the endpoint returns 201.""" token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' service_fee = factory_fee_model('SF01', 1.5) factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 100), service_fee=service_fee) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] assert rv.json.get('filingFees') == 100 assert rv.json.get('serviceFees') == 1.5 def test_calculate_fees_with_zero_service_fee(session, client, jwt, app): """Assert that service fee is zero if the filing fee is zero.""" token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} corp_type = 'XX' filing_type_code = 'XOTANN' factory_fee_schedule_model( factory_filing_type_model('XOTANN', 'TEST'), factory_corp_type_model('XX', 'TEST'), factory_fee_model('XXX', 0)) rv = client.get(f'/api/v1/fees/{corp_type}/{filing_type_code}', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] assert rv.json.get('filingFees') == 0 assert rv.json.get('serviceFees') == 0 def test_fee_for_account_fee_settings(session, client, jwt, app): """Assert that the endpoint returns 200.""" token = jwt.create_jwt(get_claims(role=Role.SYSTEM.value), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} rv = client.post('/api/v1/accounts', data=json.dumps(get_gov_account_payload()), headers=headers) account_id = rv.json.get('authAccountId') # Create account fee details. token = jwt.create_jwt(get_claims(role=Role.MANAGE_ACCOUNTS.value), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} client.post(f'/api/v1/accounts/{account_id}/fees', data=json.dumps({'accountFees': [ { 'applyFilingFees': False, 'serviceFeeCode': 'TRF02', # 1.0 'product': 'BUSINESS' } ]}), headers=headers) # Get fee for this account. token = jwt.create_jwt(get_claims(role=Role.EDITOR.value), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json', 'Account-Id': account_id} rv = client.get('/api/v1/fees/BEN/BCANN', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] # assert filing fee is not applied and service fee is applied assert rv.json.get('filingFees') == 0 assert rv.json.get('serviceFees') == 1.0 # Now change the settings to apply filing fees and assert token = jwt.create_jwt(get_claims(role=Role.MANAGE_ACCOUNTS.value), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} client.put(f'/api/v1/accounts/{account_id}/fees/BUSINESS', data=json.dumps({ 'applyFilingFees': True, 'serviceFeeCode': 'TRF01', # 1.5 'product': 'BUSINESS' }), headers=headers) # Get fee for this account. token = jwt.create_jwt(get_claims(role=Role.EDITOR.value), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json', 'Account-Id': account_id} rv = client.get('/api/v1/fees/BEN/BCANN', headers=headers) assert rv.status_code == 200 assert schema_utils.validate(rv.json, 'fees')[0] # assert filing fee is applied and service fee is applied assert rv.json.get('filingFees') > 0 assert rv.json.get('serviceFees') == 1.5 def factory_filing_type_model( filing_type_code: str, filing_description: str = 'TEST'): """Return the filing type model.""" filing_type = FilingType(code=filing_type_code, description=filing_description) filing_type.save() return filing_type def factory_fee_model( fee_code: str, amount: int): """Return the fee code model.""" fee_code_master = FeeCode(code=fee_code, amount=amount) fee_code_master.save() return fee_code_master def factory_corp_type_model( corp_type_code: str, corp_type_description: str): """Return the corp type model.""" corp_type = CorpType(code=corp_type_code, description=corp_type_description) corp_type.save() return corp_type def factory_fee_schedule_model( filing_type: FilingType, corp_type: CorpType, fee_code: FeeCode, fee_start_date: date = date.today(), fee_end_date: date = None, service_fee: FeeCode = None): """Return the fee schedule model.""" fee_schedule = FeeSchedule(filing_type_code=filing_type.code, corp_type_code=corp_type.code, fee_code=fee_code.code, fee_start_date=fee_start_date, fee_end_date=fee_end_date ) if service_fee: fee_schedule.service_fee_code = service_fee.code fee_schedule.save() return fee_schedule
41.029032
112
0.679928
1,730
12,719
4.755491
0.115029
0.045703
0.040841
0.030996
0.753738
0.734533
0.734533
0.727483
0.70767
0.698554
0
0.016225
0.190738
12,719
309
113
41.161812
0.782959
0.130907
0
0.622727
0
0
0.19145
0.060376
0
0
0
0
0.163636
1
0.068182
false
0
0.027273
0
0.113636
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
feb98f525f627b833eb5f7cdfb89e344a5f06574
103
py
Python
src/jj_analyzer/__init__.py
ninetymiles/jj-logcat-analyzer
d4ae0fddfefc303ae9c17e6c9e08aad6a231e036
[ "Apache-1.1" ]
null
null
null
src/jj_analyzer/__init__.py
ninetymiles/jj-logcat-analyzer
d4ae0fddfefc303ae9c17e6c9e08aad6a231e036
[ "Apache-1.1" ]
null
null
null
src/jj_analyzer/__init__.py
ninetymiles/jj-logcat-analyzer
d4ae0fddfefc303ae9c17e6c9e08aad6a231e036
[ "Apache-1.1" ]
null
null
null
#! /usr/bin/python import sys if sys.version_info[0] == 3: from .__main__ import * else: pass
12.875
28
0.640777
16
103
3.8125
0.875
0
0
0
0
0
0
0
0
0
0
0.025
0.223301
103
8
29
12.875
0.7375
0.165049
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.2
0.4
0
0.4
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
0
0
0
5
2290a77719ce3ea48bd13dc7fb8b6642fe413085
144
py
Python
application/recommendations/__init__.py
QualiChain/qualichain_backend
cc6dbf1ae5d09e8d01cccde94326563b25d28b58
[ "MIT" ]
null
null
null
application/recommendations/__init__.py
QualiChain/qualichain_backend
cc6dbf1ae5d09e8d01cccde94326563b25d28b58
[ "MIT" ]
null
null
null
application/recommendations/__init__.py
QualiChain/qualichain_backend
cc6dbf1ae5d09e8d01cccde94326563b25d28b58
[ "MIT" ]
null
null
null
from flask import Blueprint recommendation_blueprint = Blueprint('recommendations', __name__) from application.recommendations import routes
20.571429
65
0.847222
14
144
8.357143
0.642857
0
0
0
0
0
0
0
0
0
0
0
0.104167
144
7
66
20.571429
0.906977
0
0
0
0
0
0.103448
0
0
0
0
0
0
1
0
false
0
0.666667
0
0.666667
0.666667
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
1
0
5
22c8357e530d1406b6c30aa5078c53db167737b2
128
py
Python
pichetprofile/__init__.py
jamenor/pichetprofile
6633ea6eaa7473af9e10f34f6a19428c2db92465
[ "MIT" ]
2
2021-04-20T01:54:40.000Z
2022-01-31T10:00:04.000Z
pichetprofile/__init__.py
jamenor/pichetprofile
6633ea6eaa7473af9e10f34f6a19428c2db92465
[ "MIT" ]
null
null
null
pichetprofile/__init__.py
jamenor/pichetprofile
6633ea6eaa7473af9e10f34f6a19428c2db92465
[ "MIT" ]
2
2021-12-12T08:17:42.000Z
2022-02-13T21:04:44.000Z
# -*- coding: utf-8 -*- from oopschool.school import Student,Tesla,SpecialStudent,Teacher from oopschool.newschool import Test
42.666667
66
0.78125
16
128
6.25
0.8125
0.26
0
0
0
0
0
0
0
0
0
0.008772
0.109375
128
3
67
42.666667
0.868421
0.164063
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
fe0a42ffd316cd292e323db6162852aaf54d8093
37
py
Python
website/addons/forward/views/__init__.py
DanielSBrown/osf.io
98dda2ac237377197acacce78274bc0a4ce8f303
[ "Apache-2.0" ]
1
2015-10-02T18:35:53.000Z
2015-10-02T18:35:53.000Z
website/addons/forward/views/__init__.py
DanielSBrown/osf.io
98dda2ac237377197acacce78274bc0a4ce8f303
[ "Apache-2.0" ]
13
2020-03-24T15:29:41.000Z
2022-03-11T23:15:28.000Z
website/addons/forward/views/__init__.py
DanielSBrown/osf.io
98dda2ac237377197acacce78274bc0a4ce8f303
[ "Apache-2.0" ]
1
2019-07-16T00:14:49.000Z
2019-07-16T00:14:49.000Z
from . import config, widget # noqa
18.5
36
0.702703
5
37
5.2
1
0
0
0
0
0
0
0
0
0
0
0
0.216216
37
1
37
37
0.896552
0.108108
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
fe0f496060ed3aa777376eab607ac140da6babfa
1,400
py
Python
horizon/forms/__init__.py
ameoba/horizon
ff9e367c98a8bb79f10914abffaaa04b0a461819
[ "Apache-2.0" ]
2
2019-12-29T09:20:13.000Z
2020-01-01T13:12:34.000Z
horizon/forms/__init__.py
yongquanf/horizon
9aad7fd6f66588fed7c27b720642e47a4a12854b
[ "Apache-2.0" ]
10
2015-02-19T20:27:04.000Z
2017-05-15T15:04:32.000Z
horizon/forms/__init__.py
yongquanf/horizon
9aad7fd6f66588fed7c27b720642e47a4a12854b
[ "Apache-2.0" ]
4
2015-05-05T08:17:28.000Z
2020-02-05T10:47:06.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # FIXME(gabriel): Legacy imports for API compatibility. from django.forms import * # noqa from django.forms import widgets # Convenience imports for public API components. from horizon.forms.base import DateForm # noqa from horizon.forms.base import SelfHandlingForm # noqa from horizon.forms.base import SelfHandlingMixin # noqa from horizon.forms.fields import DynamicChoiceField # noqa from horizon.forms.fields import DynamicTypedChoiceField # noqa from horizon.forms.views import ModalFormMixin # noqa from horizon.forms.views import ModalFormView # noqa assert widgets assert SelfHandlingMixin assert SelfHandlingForm assert DateForm assert ModalFormView assert ModalFormMixin assert DynamicTypedChoiceField assert DynamicChoiceField
36.842105
78
0.784286
185
1,400
5.935135
0.513514
0.051002
0.102004
0.10929
0.193078
0.169399
0
0
0
0
0
0.00937
0.161429
1,400
37
79
37.837838
0.925894
0.542857
0
0
0
0
0
0
0
0
0
0.027027
0.470588
1
0
true
0
0.529412
0
0.529412
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
1
1
0
0
1
0
1
0
1
0
0
5
a3b0b5f68e1084bc860c329219fb7ebd7ec06dcc
70
py
Python
numberTheory/natural.py
ndarwin314/symbolicPy
ce2e48bf1557b5995db6c324ada9fbd4767df1e3
[ "MIT" ]
null
null
null
numberTheory/natural.py
ndarwin314/symbolicPy
ce2e48bf1557b5995db6c324ada9fbd4767df1e3
[ "MIT" ]
null
null
null
numberTheory/natural.py
ndarwin314/symbolicPy
ce2e48bf1557b5995db6c324ada9fbd4767df1e3
[ "MIT" ]
null
null
null
# TODO: implement algorithms in c++ or something to make them fast
23.333333
67
0.728571
11
70
4.636364
1
0
0
0
0
0
0
0
0
0
0
0
0.214286
70
2
68
35
0.927273
0.914286
0
null
0
null
0
0
null
0
0
0.5
null
1
null
true
0
0
null
null
null
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
0
0
0
0
0
5
a3bf6d02c2f4e332e2c37541b89b9a4e5f82ec94
97
py
Python
CH7_GitCmdAndCtrl/modules/environment.py
maxmac12/BlackHatPython
60044c65ffc2f1216cbf92c2ec850a4e2e9ca5bf
[ "MIT" ]
null
null
null
CH7_GitCmdAndCtrl/modules/environment.py
maxmac12/BlackHatPython
60044c65ffc2f1216cbf92c2ec850a4e2e9ca5bf
[ "MIT" ]
null
null
null
CH7_GitCmdAndCtrl/modules/environment.py
maxmac12/BlackHatPython
60044c65ffc2f1216cbf92c2ec850a4e2e9ca5bf
[ "MIT" ]
null
null
null
import os def run(**kwargs): print("[*] In environment module.") return str(os.environ)
16.166667
39
0.639175
13
97
4.769231
0.923077
0
0
0
0
0
0
0
0
0
0
0
0.195876
97
6
40
16.166667
0.794872
0
0
0
0
0
0.265306
0
0
0
0
0
0
1
0.25
true
0
0.25
0
0.75
0.25
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
0
1
0
0
5
a3fc7e9736f8ff7c6e4924c0d8a73afdf2dd7f02
81
py
Python
aiolookin/__init__.py
bachya/aiolookin
553731047b6910b1cb74667fbb343faf9b8656ac
[ "MIT" ]
null
null
null
aiolookin/__init__.py
bachya/aiolookin
553731047b6910b1cb74667fbb343faf9b8656ac
[ "MIT" ]
3
2021-08-16T21:32:30.000Z
2021-10-05T00:30:03.000Z
aiolookin/__init__.py
bachya/aiolookin
553731047b6910b1cb74667fbb343faf9b8656ac
[ "MIT" ]
null
null
null
"""Define the aiolookin package.""" from .device import async_get_device # noqa
27
44
0.753086
11
81
5.363636
0.909091
0
0
0
0
0
0
0
0
0
0
0
0.135802
81
2
45
40.5
0.842857
0.432099
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
430437fe39813c58d169d2be946182b08eb80151
200
py
Python
hoover/site/wsgi.py
hoover/hoover
84053b2479e966b0f639692c9e226261e3188709
[ "MIT" ]
15
2016-08-18T10:48:06.000Z
2019-10-15T14:41:20.000Z
hoover/site/wsgi.py
hoover/hoover
84053b2479e966b0f639692c9e226261e3188709
[ "MIT" ]
88
2019-10-28T14:55:16.000Z
2021-05-14T12:42:52.000Z
hoover/site/wsgi.py
hoover/hoover
84053b2479e966b0f639692c9e226261e3188709
[ "MIT" ]
14
2016-09-27T13:11:57.000Z
2019-10-08T23:33:59.000Z
from . import events # noqa from django.core.wsgi import get_wsgi_application import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "hoover.site.settings") application = get_wsgi_application()
25
71
0.81
27
200
5.777778
0.592593
0.089744
0.230769
0
0
0
0
0
0
0
0
0
0.1
200
7
72
28.571429
0.866667
0.02
0
0
0
0
0.216495
0.113402
0
0
0
0
0
1
0
false
0
0.6
0
0.6
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
431f67abd21ada1dae45fd70ed84a4c58f410719
65
py
Python
addons14/base_rest/__init__.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-06-10T14:59:13.000Z
2021-06-10T14:59:13.000Z
addons14/base_rest/__init__.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
null
null
null
addons14/base_rest/__init__.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-04-09T09:44:44.000Z
2021-04-09T09:44:44.000Z
from . import models from . import components from . import http
16.25
24
0.769231
9
65
5.555556
0.555556
0.6
0
0
0
0
0
0
0
0
0
0
0.184615
65
3
25
21.666667
0.943396
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
433606583160b95b550e87a2119c5cb01f7c5b5a
76
py
Python
src/python/errors.py
Miravalier/canonfire
7eeb93270ec3f3332fa039f3a9d0e8b3b2c86263
[ "MIT" ]
1
2020-01-30T16:36:04.000Z
2020-01-30T16:36:04.000Z
src/python/errors.py
Miravalier/canonfire
7eeb93270ec3f3332fa039f3a9d0e8b3b2c86263
[ "MIT" ]
9
2021-11-21T14:28:54.000Z
2021-11-21T14:38:16.000Z
src/python/errors.py
Miravalier/canonfire
7eeb93270ec3f3332fa039f3a9d0e8b3b2c86263
[ "MIT" ]
null
null
null
class AuthError(Exception): pass class JsonError(Exception): pass
10.857143
27
0.710526
8
76
6.75
0.625
0.481481
0
0
0
0
0
0
0
0
0
0
0.210526
76
6
28
12.666667
0.9
0
0
0.5
0
0
0
0
0
0
0
0
0
1
0
true
0.5
0
0
0.5
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
0
0
0
5
4a32ad81cfcc28f835805b24183250a1a290fdeb
235
py
Python
weibo_image_spider/exceptions.py
lonsty/weibo-pic-spider-hd
c7dae38b51209296cc8e71aa6fb80f094d549198
[ "MIT" ]
null
null
null
weibo_image_spider/exceptions.py
lonsty/weibo-pic-spider-hd
c7dae38b51209296cc8e71aa6fb80f094d549198
[ "MIT" ]
null
null
null
weibo_image_spider/exceptions.py
lonsty/weibo-pic-spider-hd
c7dae38b51209296cc8e71aa6fb80f094d549198
[ "MIT" ]
null
null
null
# @AUTHOR : lonsty # @DATE : 2020/3/28 18:01 class CookiesExpiredException(Exception): pass class NoImagesException(Exception): pass class ContentParserError(Exception): pass class UserNotFound(Exception): pass
12.368421
41
0.719149
24
235
7.041667
0.625
0.307692
0.319527
0
0
0
0
0
0
0
0
0.057895
0.191489
235
18
42
13.055556
0.831579
0.170213
0
0.5
0
0
0
0
0
0
0
0
0
1
0
true
0.5
0
0
0.5
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
0
0
0
5
4a42d347c7abb078f1060ffec9bcd3fae7f3044c
46
py
Python
datajoint-workflow/{{cookiecutter.github_repo}}/src/{{cookiecutter.__pkg_import_name}}/version.py
Yambottle/dj-workflow-template
a47a354af2f9303c898ef403491e69cfc396d196
[ "MIT" ]
null
null
null
datajoint-workflow/{{cookiecutter.github_repo}}/src/{{cookiecutter.__pkg_import_name}}/version.py
Yambottle/dj-workflow-template
a47a354af2f9303c898ef403491e69cfc396d196
[ "MIT" ]
null
null
null
datajoint-workflow/{{cookiecutter.github_repo}}/src/{{cookiecutter.__pkg_import_name}}/version.py
Yambottle/dj-workflow-template
a47a354af2f9303c898ef403491e69cfc396d196
[ "MIT" ]
6
2022-02-18T20:19:04.000Z
2022-03-05T05:29:23.000Z
__version__ = "{{cookiecutter._pkg_version}}"
23
45
0.76087
4
46
7.25
0.75
0
0
0
0
0
0
0
0
0
0
0
0.065217
46
1
46
46
0.674419
0
0
0
0
0
0.630435
0.630435
0
0
0
0
0
1
0
false
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
4a4d9078d162889cc7a0df9b67742f350806db8d
13,952
py
Python
stores/apps/inventory/migrations/0001_initial.py
diassor/CollectorCity-Market-Place
892ad220b8cf1c0fc7433f625213fe61729522b2
[ "Apache-2.0" ]
135
2015-03-19T13:28:18.000Z
2022-03-27T06:41:42.000Z
stores/apps/inventory/migrations/0001_initial.py
dfcoding/CollectorCity-Market-Place
e59acec3d600c049323397b17cae14fdcaaaec07
[ "Apache-2.0" ]
null
null
null
stores/apps/inventory/migrations/0001_initial.py
dfcoding/CollectorCity-Market-Place
e59acec3d600c049323397b17cae14fdcaaaec07
[ "Apache-2.0" ]
83
2015-01-30T01:00:15.000Z
2022-03-08T17:25:10.000Z
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ProductType' db.create_table('inventory_producttype', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal('inventory', ['ProductType']) # Adding model 'Product' db.create_table('inventory_product', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('shop', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['shops.Shop'])), ('title', self.gf('django.db.models.fields.CharField')(max_length=200)), ('description', self.gf('django.db.models.fields.TextField')()), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketCategory'])), ('subcategory', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketSubCategory'])), ('date_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('weight', self.gf('django.db.models.fields.DecimalField')(default='0', max_digits=11, decimal_places=2)), ('type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['inventory.ProductType'], null=True, blank=True)), )) db.send_create_signal('inventory', ['Product']) # Adding model 'Coin' db.create_table('inventory_coin', ( ('producttype_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['inventory.ProductType'], unique=True, primary_key=True)), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketCategory'], null=True, blank=True)), ('subcategory', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketSubCategory'], null=True, blank=True)), ('country_code', self.gf('django.db.models.fields.CharField')(default='us', max_length=2)), ('pcgs_number', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), ('description', self.gf('django.db.models.fields.TextField')(default='', blank='')), ('year_issued', self.gf('django.db.models.fields.CharField')(default='', max_length=24, blank='')), ('actual_year', self.gf('django.db.models.fields.CharField')(default='', max_length=24, blank='')), ('denomination', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('major_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('die_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('prefix', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('suffix', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('sort_order', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('heading', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('holder_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('holder_variety_2', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('additional_data', self.gf('django.db.models.fields.TextField')(default='', blank='')), ('last_update', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('inventory', ['Coin']) def backwards(self, orm): # Deleting model 'ProductType' db.delete_table('inventory_producttype') # Deleting model 'Product' db.delete_table('inventory_product') # Deleting model 'Coin' db.delete_table('inventory_coin') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'inventory.coin': { 'Meta': {'object_name': 'Coin', '_ormbases': ['inventory.ProductType']}, 'actual_year': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '24', 'blank': "''"}), 'additional_data': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': "''"}), 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketCategory']", 'null': 'True', 'blank': 'True'}), 'country_code': ('django.db.models.fields.CharField', [], {'default': "'us'", 'max_length': '2'}), 'denomination': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': "''"}), 'die_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'heading': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'holder_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'holder_variety_2': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'last_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'major_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'pcgs_number': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'prefix': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'producttype_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['inventory.ProductType']", 'unique': 'True', 'primary_key': 'True'}), 'sort_order': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketSubCategory']", 'null': 'True', 'blank': 'True'}), 'suffix': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'year_issued': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '24', 'blank': "''"}) }, 'inventory.product': { 'Meta': {'object_name': 'Product'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketCategory']"}), 'date_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'shop': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['shops.Shop']"}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketSubCategory']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['inventory.ProductType']", 'null': 'True', 'blank': 'True'}), 'weight': ('django.db.models.fields.DecimalField', [], {'default': "'0'", 'max_digits': '11', 'decimal_places': '2'}) }, 'inventory.producttype': { 'Meta': {'object_name': 'ProductType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'market.marketcategory': { 'Meta': {'object_name': 'MarketCategory'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '60', 'db_index': 'True'}) }, 'market.marketplace': { 'Meta': {'object_name': 'MarketPlace'}, 'base_domain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '92'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '92', 'db_index': 'True'}), 'template_prefix': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '92', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '92'}) }, 'market.marketsubcategory': { 'Meta': {'unique_together': "(('parent', 'slug'),)", 'object_name': 'MarketSubCategory'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '255'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'subcategories'", 'null': 'True', 'to': "orm['market.MarketCategory']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '60', 'db_index': 'True'}) }, 'shops.shop': { 'Meta': {'object_name': 'Shop'}, 'admin': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'bids': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'date_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'default': "'39.29038,-76.61219'", 'max_length': '255'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'views': ('django.db.models.fields.IntegerField', [], {'default': '0'}) } } complete_apps = ['inventory']
76.240437
181
0.573825
1,447
13,952
5.422944
0.111265
0.110106
0.190901
0.272716
0.786798
0.784631
0.747419
0.720403
0.661654
0.561361
0
0.012016
0.182841
13,952
182
182
76.659341
0.676256
0.01154
0
0.148148
0
0
0.542843
0.328013
0
0
0
0
0
1
0.012346
false
0.006173
0.024691
0
0.055556
0
0
0
0
null
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
4a553a81b1d7bdf7e54e2eefdce19b67fef643fd
138
py
Python
cfdata/tabular/converters/__init__.py
carefree0910/carefree-data
ae0f4ea5724b4efd5d76f2a9d420acf3322c1d19
[ "MIT" ]
9
2020-10-25T11:52:34.000Z
2022-01-23T02:45:41.000Z
cfdata/tabular/converters/__init__.py
carefree0910/carefree-data
ae0f4ea5724b4efd5d76f2a9d420acf3322c1d19
[ "MIT" ]
2
2020-08-02T01:58:48.000Z
2021-02-26T11:24:19.000Z
cfdata/tabular/converters/__init__.py
carefree0910/carefree-data
ae0f4ea5724b4efd5d76f2a9d420acf3322c1d19
[ "MIT" ]
1
2021-11-04T14:34:13.000Z
2021-11-04T14:34:13.000Z
from .base import * from .string import * from .categorical import * from .numerical import * __all__ = ["Converter", "converter_dict"]
17.25
41
0.724638
16
138
5.9375
0.5625
0.315789
0
0
0
0
0
0
0
0
0
0
0.15942
138
7
42
19.714286
0.818966
0
0
0
0
0
0.166667
0
0
0
0
0
0
1
0
false
0
0.8
0
0.8
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
4a752e0adb3dfdb8832eacdb68f81c47021fa651
378
gyp
Python
deps/libgdal/gyp-formats/ogr_mem.gyp
khrushjing/node-gdal-async
6546b0c8690f2db677d5385b40b407523503b314
[ "Apache-2.0" ]
42
2021-03-26T17:34:52.000Z
2022-03-18T14:15:31.000Z
deps/libgdal/gyp-formats/ogr_mem.gyp
khrushjing/node-gdal-async
6546b0c8690f2db677d5385b40b407523503b314
[ "Apache-2.0" ]
29
2021-06-03T14:24:01.000Z
2022-03-23T15:43:58.000Z
deps/libgdal/gyp-formats/ogr_mem.gyp
khrushjing/node-gdal-async
6546b0c8690f2db677d5385b40b407523503b314
[ "Apache-2.0" ]
8
2021-05-14T19:26:37.000Z
2022-03-21T13:44:42.000Z
{ "includes": [ "../common.gypi" ], "targets": [ { "target_name": "libgdal_ogr_mem_frmt", "type": "static_library", "sources": [ "../gdal/ogr/ogrsf_frmts/mem/ogrmemdatasource.cpp", "../gdal/ogr/ogrsf_frmts/mem/ogrmemlayer.cpp", "../gdal/ogr/ogrsf_frmts/mem/ogrmemdriver.cpp" ], "include_dirs": [ "../gdal/ogr/ogrsf_frmts/mem" ] } ] }
18.9
55
0.595238
42
378
5.119048
0.547619
0.130233
0.223256
0.316279
0.4
0.213953
0
0
0
0
0
0
0.18254
378
19
56
19.894737
0.695793
0
0
0.105263
0
0
0.685185
0.428571
0
0
0
0
0
1
0
true
0
0
0
0
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
4a7ff589828eca63a17e67bce0eb8c34992e953a
158
py
Python
{{cookiecutter.project_name}}/{{cookiecutter.app_name}}/extensions.py
DevAerial/flask-api-template
6d3f745f2dacb793c4bdc6aaaceb86eb472efe55
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/{{cookiecutter.app_name}}/extensions.py
DevAerial/flask-api-template
6d3f745f2dacb793c4bdc6aaaceb86eb472efe55
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/{{cookiecutter.app_name}}/extensions.py
DevAerial/flask-api-template
6d3f745f2dacb793c4bdc6aaaceb86eb472efe55
[ "MIT" ]
null
null
null
from flask_marshmallow import Marshmallow{% if cookiecutter.use_celery == 'yes'%} from celery import Celery celery = Celery(){% endif %} ma = Marshmallow()
22.571429
81
0.740506
19
158
6.052632
0.578947
0.208696
0
0
0
0
0
0
0
0
0
0
0.139241
158
6
82
26.333333
0.845588
0
0
0
0
0
0.019108
0
0
0
0
0
0
0
null
null
0
0.5
null
null
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
1
0
0
0
0
5
4397c55661379269054e0b0a47adf3a823197ee1
173
py
Python
website/sites/admin.py
vnaskos/Website
1c2adb0985f3932ddeca12025a2d216d2470cb63
[ "MIT" ]
null
null
null
website/sites/admin.py
vnaskos/Website
1c2adb0985f3932ddeca12025a2d216d2470cb63
[ "MIT" ]
null
null
null
website/sites/admin.py
vnaskos/Website
1c2adb0985f3932ddeca12025a2d216d2470cb63
[ "MIT" ]
null
null
null
from django.contrib import admin # Register your models here.] from website.sites.models import Post @admin.register(Post) class TestAdmin2(admin.ModelAdmin): pass
15.727273
38
0.768786
23
173
5.782609
0.695652
0.195489
0
0
0
0
0
0
0
0
0
0.006803
0.150289
173
11
39
15.727273
0.897959
0.156069
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.2
0.4
0
0.6
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
5
43ab43b6738516044ebfd16ee957b6dda20ddd01
161
py
Python
python/test-deco-1-1.py
li-ma/homework
d75b1752a02bd028af0806683abe079c7b0a9b29
[ "Apache-2.0" ]
null
null
null
python/test-deco-1-1.py
li-ma/homework
d75b1752a02bd028af0806683abe079c7b0a9b29
[ "Apache-2.0" ]
null
null
null
python/test-deco-1-1.py
li-ma/homework
d75b1752a02bd028af0806683abe079c7b0a9b29
[ "Apache-2.0" ]
null
null
null
def deco1(func): print("before myfunc() called.") func() print("after myfunc() called.") def myfunc(): print("myfunc() called.") deco1(myfunc)
16.1
36
0.608696
19
161
5.157895
0.421053
0.367347
0
0
0
0
0
0
0
0
0
0.015504
0.198758
161
9
37
17.888889
0.744186
0
0
0
0
0
0.378882
0
0
0
0
0
0
1
0.285714
false
0
0
0
0.285714
0.428571
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
0
1
0
5
43b6c1b507adc1bb371518dff1d4802b73e3e1a5
434
py
Python
py/multiple_dispatch_example.py
coalpha/coalpha.github.io
8a620314a5c0bcbe2225d29f733379d181534430
[ "Apache-2.0" ]
null
null
null
py/multiple_dispatch_example.py
coalpha/coalpha.github.io
8a620314a5c0bcbe2225d29f733379d181534430
[ "Apache-2.0" ]
1
2020-04-12T07:48:18.000Z
2020-04-12T07:49:29.000Z
py/multiple_dispatch_example.py
coalpha/coalpha.github.io
8a620314a5c0bcbe2225d29f733379d181534430
[ "Apache-2.0" ]
1
2020-09-30T05:27:07.000Z
2020-09-30T05:27:07.000Z
from typing import * from multiple_dispatch import multiple_dispatch @overload @multiple_dispatch def add(a: Literal[4, 6, 8], b): raise TypeError("No adding 2, 4, 6, or 8!") @overload @multiple_dispatch def add(a: int, b: str): return f"int + str = {a} + {b}" @overload @multiple_dispatch def add(a: int, b: int): return a + b @multiple_dispatch def add(a, b): return f"Any + Any = {a} + {b}" print(add(2, "hello"))
18.083333
47
0.658986
72
434
3.888889
0.375
0.342857
0.271429
0.314286
0.442857
0.360714
0.25
0.25
0
0
0
0.022663
0.186636
434
23
48
18.869565
0.770538
0
0
0.388889
0
0
0.163594
0
0
0
0
0
0
1
0.222222
false
0
0.111111
0.166667
0.5
0.055556
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
0
0
0
5
43c8749a8ff42646c3b9643c7de460258d1664ae
68
py
Python
TTBenchmark/check_benchmark.py
yuqil725/benchmark_lib
f404ff829d7b3a8bb0f6b00689038cf533bba83e
[ "MIT" ]
null
null
null
TTBenchmark/check_benchmark.py
yuqil725/benchmark_lib
f404ff829d7b3a8bb0f6b00689038cf533bba83e
[ "MIT" ]
null
null
null
TTBenchmark/check_benchmark.py
yuqil725/benchmark_lib
f404ff829d7b3a8bb0f6b00689038cf533bba83e
[ "MIT" ]
null
null
null
def check_difference(): pass def update_benchmark(): pass
9.714286
23
0.676471
8
68
5.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.235294
68
6
24
11.333333
0.846154
0
0
0.5
0
0
0
0
0
0
0
0
0
1
0.5
true
0.5
0
0
0.5
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
5
43d8dcfde4fc817f885eb2d557c4f9603d6da4be
86
py
Python
src/FunctionApps/DevOps/tests/test_get_ip.py
CDCgov/prime-public-health-data-infrastructure
7e4849c3a486a84e94765bf0023b80261c510c57
[ "Apache-2.0" ]
3
2022-02-24T18:16:39.000Z
2022-03-29T20:21:41.000Z
src/FunctionApps/DevOps/tests/test_get_ip.py
CDCgov/prime-public-health-data-infrastructure
7e4849c3a486a84e94765bf0023b80261c510c57
[ "Apache-2.0" ]
17
2022-02-08T17:13:55.000Z
2022-03-28T16:49:00.000Z
src/FunctionApps/DevOps/tests/test_get_ip.py
CDCgov/prime-public-health-data-infrastructure
7e4849c3a486a84e94765bf0023b80261c510c57
[ "Apache-2.0" ]
3
2022-02-27T23:12:50.000Z
2022-03-17T04:51:47.000Z
def test_get_ip_placeholder(): """placeholder so pytest does not fail""" pass
21.5
45
0.697674
12
86
4.75
0.916667
0
0
0
0
0
0
0
0
0
0
0
0.197674
86
3
46
28.666667
0.826087
0.406977
0
0
0
0
0
0
0
0
0
0
0
1
0.5
true
0.5
0
0
0.5
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
5
78efdc29bbe17ba841a42c2ad2e6e9e8b6de242a
34
py
Python
tests/functional/test_calculator.py
bellanov/calculator
a66e68a368a5212247aeff3291c9cb8b508e91be
[ "Apache-2.0" ]
null
null
null
tests/functional/test_calculator.py
bellanov/calculator
a66e68a368a5212247aeff3291c9cb8b508e91be
[ "Apache-2.0" ]
null
null
null
tests/functional/test_calculator.py
bellanov/calculator
a66e68a368a5212247aeff3291c9cb8b508e91be
[ "Apache-2.0" ]
1
2021-05-26T16:54:17.000Z
2021-05-26T16:54:17.000Z
"""TODO: Move the Threads Here"""
17
33
0.647059
5
34
4.4
1
0
0
0
0
0
0
0
0
0
0
0
0.147059
34
1
34
34
0.758621
0.794118
0
null
0
null
0
0
null
0
0
1
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
0
0
0
0
0
5