|
|
from __future__ import annotations |
|
|
import math |
|
|
import gradio as gr |
|
|
import torch |
|
|
from PIL import Image, ImageOps |
|
|
from diffusers import StableDiffusionInstructPix2PixPipeline |
|
|
|
|
|
def main(): |
|
|
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("McGill-NLP/AURORA", safety_checker=None).to("cuda") |
|
|
example_image = Image.open("example.jpg").convert("RGB") |
|
|
|
|
|
def generate( |
|
|
input_image: Image.Image, |
|
|
instruction: str, |
|
|
steps: int, |
|
|
seed: int, |
|
|
text_cfg_scale: float, |
|
|
image_cfg_scale: float, |
|
|
): |
|
|
width, height = input_image.size |
|
|
factor = 512 / max(width, height) |
|
|
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) |
|
|
width = int((width * factor) // 64) * 64 |
|
|
height = int((height * factor) // 64) * 64 |
|
|
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) |
|
|
|
|
|
if instruction == "": |
|
|
return [input_image, seed] |
|
|
|
|
|
generator = torch.manual_seed(seed) |
|
|
edited_image = pipe( |
|
|
instruction, image=input_image, |
|
|
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale, |
|
|
num_inference_steps=steps, generator=generator, |
|
|
).images[0] |
|
|
return [seed, text_cfg_scale, image_cfg_scale, edited_image] |
|
|
|
|
|
def reset(): |
|
|
return ["", 50, 42, 7.5, 1.5, None, None] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 10px;"> |
|
|
AURORA: Learning Action and Reasoning-Centric Image Editing from Videos and Simulations |
|
|
</h1> |
|
|
<p> |
|
|
AURORA (Action Reasoning Object Attribute) enables training an instruction-guided image editing model that can perform action and reasoning-centric edits, in addition to "simpler" established object, attribute or global edits. |
|
|
</p>""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=3): |
|
|
instruction = gr.Textbox(value="move the lemon to the right of the table", lines=1, label="Edit instruction", interactive=True) |
|
|
with gr.Column(scale=1, min_width=100): |
|
|
generate_button = gr.Button("Generate", variant="primary") |
|
|
with gr.Column(scale=1, min_width=100): |
|
|
reset_button = gr.Button("Reset", variant="stop") |
|
|
|
|
|
with gr.Row(): |
|
|
input_image = gr.Image(value=example_image, label="Input image", type="pil", interactive=True) |
|
|
edited_image = gr.Image(label=f"Edited image", type="pil", interactive=False) |
|
|
|
|
|
with gr.Row(): |
|
|
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True) |
|
|
seed = gr.Number(value=42, precision=0, label="Seed", interactive=True) |
|
|
text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True) |
|
|
image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True) |
|
|
|
|
|
generate_button.click( |
|
|
fn=generate, |
|
|
inputs=[ |
|
|
input_image, |
|
|
instruction, |
|
|
steps, |
|
|
seed, |
|
|
text_cfg_scale, |
|
|
image_cfg_scale, |
|
|
], |
|
|
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image], |
|
|
) |
|
|
reset_button.click( |
|
|
fn=reset, |
|
|
inputs=[], |
|
|
outputs=[instruction, steps, seed, text_cfg_scale, image_cfg_scale, edited_image, input_image], |
|
|
) |
|
|
|
|
|
demo.queue() |
|
|
demo.launch() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |