AURORA / eval_disc_edit.py
yfqiu-nlp's picture
Add files using upload-large-folder tool
8163775 verified
import json
import math
tasks = ['whatsup', 'something', 'ag', 'kubric', 'clevr']
ckpts = [
'checkpoints_magic_reproduce_epoch=000047-step=000012999.ckpt_results.json',
'logs_logs_finetune_magicbrush_ag_something_kubric_15-15-1-1_init-magic_first_checkpoints_trainstep_checkpoints_step=000041999.ckpt_results.json'
]
for ckpt in ckpts:
print(ckpt)
skill_scores_latent_l2 = {task: [] for task in tasks}
for task in tasks:
results = json.load(open(f'itm_evaluation/test/{task}/{ckpt}'))
samples = 4
for idx, result in results.items():
pos_latent_l2s = result['pos']['latent_l2']
neg_latent_l2s = result['neg']['latent_l2']
if task == 'flickr_edit':
skills = result['task'].split(',')
skills = [skill.strip() for skill in skills]
for skill in skills:
skill_scores_latent_l2[skill] += [1 if pos_latent_l2s[i] < neg_latent_l2s[i] else 0 for i in range(len(pos_latent_l2s))]
skill_scores_latent_l2[task] += [1 if pos_latent_l2s[i] < neg_latent_l2s[i] else 0 for i in range(len(pos_latent_l2s))]
# make latex row with each task's score
row = ''
for k, v in skill_scores_latent_l2.items():
final_score = sum(v) / len(v)
se = math.sqrt(final_score * (1 - final_score) / len(v))
row += f' & {final_score:.3f} \pm {se:.3f}'
print(row)