hitonet commited on
Commit
899d3de
Β·
verified Β·
1 Parent(s): ec44315

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +55 -61
README.md CHANGED
@@ -56,28 +56,57 @@ library_name: transformers
56
 
57
  ---
58
 
59
- ## Overview
60
 
61
- Hito is a 1.7B parameter language model fine-tuned with **Nested Cognitive Reasoning (NCR)** - a novel architecture that enables structured, self-correcting thinking patterns. Unlike traditional models that produce linear outputs, Hito thinks in branching, hierarchical structures that mirror human cognition.
62
 
63
- ### Key Features
 
 
 
 
64
 
65
- - **Structured Reasoning**: Uses cognitive tags (`<think>`, `<doubt>`, `<verify>`) for transparent thought processes
66
- - **Self-Correction**: Built-in mechanisms to catch and correct errors mid-reasoning
67
- - **Humble AI**: Acknowledges uncertainty and limitations rather than hallucinating
68
- - **Efficient**: Runs on consumer hardware with GGUF quantizations available
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  ---
71
 
72
- ## Benchmark Results
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- | Model | Params | Overall | Counting | Math | Cognitive Bias |
75
- |-------|--------|---------|----------|------|----------------|
76
- | GPT-5-mini | ~8B | **100%** | 100% | 100% | βœ… |
77
- | Claude Haiku 4.5 | ~8B | 90% | 67% | 100% | βœ… |
78
- | **Hito 1.7B** | **1.7B** | **80%** | **67%** | **100%** | **βœ…** |
79
- | GPT-4o-mini | ~8B | 80% | 33% | 100% | ❌ |
80
- | Qwen3 1.7B (base) | 1.7B | 17% | 0% | 17% | ❌ |
81
 
82
  <details>
83
  <summary><b>πŸ“Š Visual Benchmarks</b></summary>
@@ -90,32 +119,21 @@ Hito is a 1.7B parameter language model fine-tuned with **Nested Cognitive Reaso
90
 
91
  </details>
92
 
93
- ### The Bat and Ball Test
94
 
95
- *"A bat and a ball cost $1.10 together. The bat costs $1.00 more than the ball. How much does the ball cost?"*
96
 
97
- Most AI models (and humans) answer 10 cents. **That's wrong.**
 
98
 
99
- | Model | Answer | Correct |
100
- |-------|--------|---------|
101
- | **Hito 1.7B** | **$0.05** | βœ… |
102
- | Qwen3 1.7B (base) | $0.10 | ❌ |
103
- | GPT-4o-mini | $0.10 | ❌ |
104
 
105
- **Why Hito gets it right:**
 
106
 
107
- ```xml
108
- <think>
109
- <understand>Ball + Bat = $1.10, Bat = Ball + $1.00</understand>
110
- <doubt>Intuition says 10 cents... but let me verify.</doubt>
111
- <logic>
112
- If ball = $0.10, bat = $1.10, total = $1.20. WRONG.
113
- Let ball = x: x + (x + 1) = 1.10, 2x = 0.10, x = 0.05
114
- </logic>
115
- <verify>Ball $0.05 + Bat $1.05 = $1.10 βœ“</verify>
116
- </think>
117
- The ball costs five cents.
118
- ```
119
 
120
  ---
121
 
@@ -134,20 +152,6 @@ Hito uses a tree-structured reasoning system with four cognitive states:
134
  | **Empathetic** | Feelings, perspectives | `<emotion>`, `<empathize>`, `<mood>` |
135
  | **Reflective** | Depth, meaning | `<reflect>`, `<doubt>`, `<honest>` |
136
 
137
- <details>
138
- <summary><b>🌳 Tree Reasoning Flow</b></summary>
139
-
140
- <img src="diagrams/tree-reasoning.svg" alt="Tree Reasoning" width="600"/>
141
-
142
- </details>
143
-
144
- <details>
145
- <summary><b>🎨 Creative Mode Flow</b></summary>
146
-
147
- <img src="diagrams/creative-flow.svg" alt="Creative Flow" width="600"/>
148
-
149
- </details>
150
-
151
  ### The Humble Tags
152
 
153
  What makes Hito different is its built-in humility system:
@@ -174,7 +178,7 @@ tokenizer = AutoTokenizer.from_pretrained("hitonet/hito-1.7b")
174
 
175
  messages = [
176
  {"role": "system", "content": "You are Hito by Hitonet.com."},
177
- {"role": "user", "content": "What is 15% of 200?"}
178
  ]
179
 
180
  inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device)
@@ -220,16 +224,6 @@ Try the full API at [platform.hitonet.com](https://platform.hitonet.com) - $1 fr
220
 
221
  ---
222
 
223
- ## Training
224
-
225
- Hito is fine-tuned from Qwen3-1.7B using Supervised Fine-Tuning (SFT) with synthetic data generated by our flagship Hito-Genius model. The training focuses on:
226
-
227
- - **Cognitive Pattern Transfer**: Teaching structured reasoning through demonstration
228
- - **Self-Correction Habits**: Training the model to verify its own work
229
- - **Humility Patterns**: Learning to express uncertainty appropriately
230
-
231
- ---
232
-
233
  ## Research
234
 
235
  For technical details on Nested Cognitive Reasoning, see our research paper:
 
56
 
57
  ---
58
 
59
+ ## 🧠 Cognitive Bias Resistance
60
 
61
+ Hito is specifically trained to resist cognitive biases that trip up most AI models and humans alike.
62
 
63
+ ### The Bat and Ball Test
64
+
65
+ > *"A bat and a ball cost $1.10 together. The bat costs $1.00 more than the ball. How much does the ball cost?"*
66
+
67
+ Most people (and AI models) instinctively say **10 cents**. That's wrong.
68
 
69
+ | Model | Parameters | Answer | Correct |
70
+ |-------|------------|--------|---------|
71
+ | **Hito 1.7B** | **1.7B** | **$0.05** | βœ… |
72
+ | llama3.1 | 8B | $0.10 | ❌ |
73
+ | deepseek-r1 | 7B | $0.10 | ❌ |
74
+ | deepseek-r1 | 32B | $0.10 | ❌ |
75
+ | mistral | 7B | $0.10 | ❌ |
76
+ | tinyllama | 1.1B | $0.10 | ❌ |
77
+ | llama3.2 | 1B | $0.10 | ❌ |
78
+
79
+ **Hito's reasoning:**
80
+ ```xml
81
+ <think>
82
+ <understand>Ball + Bat = $1.10, Bat = Ball + $1.00</understand>
83
+ <doubt>Intuition says 10 cents... but let me verify.</doubt>
84
+ <logic>
85
+ If ball = $0.10, bat = $1.10, total = $1.20. WRONG.
86
+ Let ball = x: x + (x + 1) = 1.10, 2x = 0.10, x = 0.05
87
+ </logic>
88
+ <verify>Ball $0.05 + Bat $1.05 = $1.10 βœ“</verify>
89
+ </think>
90
+ The ball costs five cents.
91
+ ```
92
 
93
  ---
94
 
95
+ ## πŸ“Š Benchmark Results
96
+
97
+ Tested against public Ollama endpoints with identical prompts:
98
+
99
+ | Model | Params | Counting | Math | Reasoning | Cognitive Bias | Overall |
100
+ |-------|--------|----------|------|-----------|----------------|---------|
101
+ | **Hito 1.7B** | **1.7B** | **100%** | **100%** | **100%** | βœ… **Resistant** | **100%** |
102
+ | llama3.1 | 8B | 100% | 67% | 100% | ❌ Fails | 89% |
103
+ | deepseek-r1:7b | 7B | 100% | 67% | 100% | ❌ Fails | 89% |
104
+ | deepseek-r1:32b | 32B | 100% | 67% | 100% | ❌ Fails | 89% |
105
+ | mistral | 7B | 33% | 67% | 100% | ❌ Fails | 67% |
106
+ | llama3.2 | 1B | 0% | 67% | 67% | ❌ Fails | 44% |
107
+ | tinyllama | 1.1B | 0% | 33% | 33% | ❌ Fails | 33% |
108
 
109
+ > **Note:** Cognitive Bias test uses the bat-and-ball problem. Models marked "Fails" gave the intuitive wrong answer ($0.10) instead of the correct answer ($0.05).
 
 
 
 
 
 
110
 
111
  <details>
112
  <summary><b>πŸ“Š Visual Benchmarks</b></summary>
 
119
 
120
  </details>
121
 
122
+ ---
123
 
124
+ ## 🎯 What Makes Hito Different
125
 
126
+ ### 1. Cognitive Bias Resistance
127
+ While larger models fall for intuitive traps, Hito is trained to **stop and verify** before answering.
128
 
129
+ ### 2. Structured Thinking
130
+ Uses cognitive tags (`<think>`, `<doubt>`, `<verify>`) for transparent, traceable reasoning.
 
 
 
131
 
132
+ ### 3. Self-Aware Identity
133
+ Hito knows who it is, who made it, and its purpose. No generic "I'm an AI assistant" responses.
134
 
135
+ ### 4. Humble by Design
136
+ Built-in humility system with tags for doubt, honesty, and acknowledging limits.
 
 
 
 
 
 
 
 
 
 
137
 
138
  ---
139
 
 
152
  | **Empathetic** | Feelings, perspectives | `<emotion>`, `<empathize>`, `<mood>` |
153
  | **Reflective** | Depth, meaning | `<reflect>`, `<doubt>`, `<honest>` |
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  ### The Humble Tags
156
 
157
  What makes Hito different is its built-in humility system:
 
178
 
179
  messages = [
180
  {"role": "system", "content": "You are Hito by Hitonet.com."},
181
+ {"role": "user", "content": "A bat and ball cost $1.10. The bat costs $1 more than the ball. How much is the ball?"}
182
  ]
183
 
184
  inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device)
 
224
 
225
  ---
226
 
 
 
 
 
 
 
 
 
 
 
227
  ## Research
228
 
229
  For technical details on Nested Cognitive Reasoning, see our research paper: