Add files using upload-large-folder tool
Browse files- LICENSE +21 -0
- README.md +150 -0
- config.json +54 -0
- configuration_bailing_moe_v2.py +78 -0
- generation_config.json +9 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_bailing_moe_v2.py +1597 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2025 inclusionAI
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- inclusionAI/Ling-mini-base-2.0-20T
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
library_name: transformers
|
| 9 |
+
tags:
|
| 10 |
+
- moe
|
| 11 |
+
---
|
| 12 |
+
# Ring-mini-sparse-2.0-exp
|
| 13 |
+
|
| 14 |
+
<p align="center">
|
| 15 |
+
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
|
| 16 |
+
<p>
|
| 17 |
+
<p align="center">🤗 <a href="https://huggingface.co/inclusionAI/Ring-mini-sparse-2.0-exp">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/inclusionAI/Ring-mini-sparse-2.0-exp">ModelScope</a></p>
|
| 18 |
+
|
| 19 |
+
## Introduction
|
| 20 |
+
|
| 21 |
+
We are excited to annouce the official release of Ring-mini-sparse-2.0-exp. This model employs a Mixture of Block Attention (MoBA) architecture, delivering highly efficient inference without compromising performance. This model inherts from [Ling-mini-base-2.0](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-20T), continually trained on an additional 100B tokens. The performance of the MoBA-based model is on par with the standard attention models of the same size (e.g., Ring-mini-v2). Furthermore, by applying YaRN-based 4× window extrapolation, we extend the context length to 128K tokens, delivering superior inference speed on tasks that involve long inputs and outputs.
|
| 22 |
+
|
| 23 |
+
<div style="display: flex; justify-content: center;">
|
| 24 |
+
<div style="text-align: center;">
|
| 25 |
+
<img src="https://mdn.alipayobjects.com/huamei_9mcypc/afts/img/PIoSTKEzmsEAAAAAU5AAAAgADlCHAQFr/original" width="800">
|
| 26 |
+
<p style="margin-top: 8px; font-size: 14px;"><strong>Figure 1:</strong> The Model Architecture of Ring-mini-sparse-2.0-exp</p>
|
| 27 |
+
</div>
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
## Evaluation
|
| 31 |
+
|
| 32 |
+
To comprehensively assess the reasoning capability of our model, we conducted evaluations on five challenging benchmarks spanning mathematics, coding, and science, comparing it with Ring-mini-2.0, Qwen3-8B-Thinking, and GPT-OSS-20B-Medium. The MoBA architecture demonstrates comparable performance to full softmax attention models.
|
| 33 |
+
|
| 34 |
+
<div style="display: flex; justify-content: center;">
|
| 35 |
+
<div style="text-align: center;">
|
| 36 |
+
<img src="https://mdn.alipayobjects.com/huamei_9mcypc/afts/img/Yr7eRreHNNUAAAAAWfAAAAgADlCHAQFr/original" width="100%">
|
| 37 |
+
<p style="margin-top: 8px; font-size: 14px;"><strong>Figure 2:</strong> Model Performance Comparison </p>
|
| 38 |
+
</div>
|
| 39 |
+
</div>
|
| 40 |
+
|
| 41 |
+
## Highly Sparse, High-Speed Generation
|
| 42 |
+
|
| 43 |
+
Ring-mini-sparse-2.0-exp achieves high inference efficiency through highly sparse attention and a Mixture-of-Experts (MoE) architecture. Unlike MoBA used in Kimi, our approach shares the same KV block selection across all heads within a GQA group, reducing the total number of KV tokens each query head retrieves from the KV cache during decoding. During 64K-context decoding, only 8,192 key-value (KV) tokens are activated per query—reducing KV cache retrieval overhead by 87.5% compared to full attention and delivering up to 3× inference speedup over Ring-mini-2.0. This design significantly lowers computational costs for high-concurrency scenarios involving reasoning-intensive models while maintaining competitive performance. Additionally, with YaRN extrapolation, the model extends context capacity to 128K tokens, achieving up to 2× relative speedup in long-input scenarios compared to Ring-mini-2.0 (full softmax attention).
|
| 44 |
+
|
| 45 |
+
<div style="text-align: center;">
|
| 46 |
+
<p align="center">
|
| 47 |
+
<img src="https://mdn.alipayobjects.com/huamei_9mcypc/afts/img/iL_eTZP-FVEAAAAATOAAAAgADlCHAQFr/original" width="500">
|
| 48 |
+
</p>
|
| 49 |
+
<p style="margin-top: 8px; font-size: 14px;"><strong>Figure 4:</strong> Inference speedup ratios of Ring-mini-sparse-2.0-exp compared to Ring-mini-2.0.</p>
|
| 50 |
+
</div>
|
| 51 |
+
</div>
|
| 52 |
+
|
| 53 |
+
## Quickstart
|
| 54 |
+
|
| 55 |
+
### 🤗 Hugging Face Transformers
|
| 56 |
+
Installation requirements:
|
| 57 |
+
|
| 58 |
+
```shell
|
| 59 |
+
pip install transformers==4.56.1
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
Here is a code snippet to show you how to use the chat model with `transformers`:
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 66 |
+
|
| 67 |
+
model_name = "inclusionAI/Ring-mini-sparse-2.0-exp"
|
| 68 |
+
|
| 69 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 70 |
+
model_name,
|
| 71 |
+
dtype="auto",
|
| 72 |
+
device_map="auto",
|
| 73 |
+
trust_remote_code=True,
|
| 74 |
+
)
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
prompts = [
|
| 79 |
+
"Give me a short introduction to large language models."
|
| 80 |
+
]
|
| 81 |
+
input_texts = []
|
| 82 |
+
for prompt in prompts:
|
| 83 |
+
messages = [
|
| 84 |
+
{"role": "user", "content": prompt}
|
| 85 |
+
]
|
| 86 |
+
text = tokenizer.apply_chat_template(
|
| 87 |
+
messages,
|
| 88 |
+
tokenize=False,
|
| 89 |
+
add_generation_prompt=True
|
| 90 |
+
)
|
| 91 |
+
input_texts.append(text)
|
| 92 |
+
|
| 93 |
+
print(input_texts)
|
| 94 |
+
|
| 95 |
+
model_inputs = tokenizer(input_texts, return_tensors="pt", return_token_type_ids=False, padding=True, padding_side='left').to(model.device)
|
| 96 |
+
|
| 97 |
+
generated_ids = model.generate(
|
| 98 |
+
**model_inputs,
|
| 99 |
+
max_new_tokens=8192,
|
| 100 |
+
do_sample=False,
|
| 101 |
+
)
|
| 102 |
+
generated_ids = [
|
| 103 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
responses = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 107 |
+
|
| 108 |
+
print("*" * 30)
|
| 109 |
+
print(responses)
|
| 110 |
+
print("*" * 30)
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
### 🚀 SGLang
|
| 114 |
+
|
| 115 |
+
#### Environment Preparation
|
| 116 |
+
|
| 117 |
+
We have submitted our PR to SGLang official release and it will be merged later, for now we can prepare the environment following steps, firstly install the community version SGLang and required packages:
|
| 118 |
+
```shell
|
| 119 |
+
pip install sglang==0.5.3 sgl-kernel==0.3.15 torch==2.8.0 torchvision==0.23.0 torchao
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
Then you should install our sglang wheel package:
|
| 123 |
+
```shell
|
| 124 |
+
pip install http://raw.githubusercontent.com/inclusionAI/Ring-V2/blob/main/moba/whls/sglang-0.5.3.post1-py3-none-any.whl --no-deps --force-reinstall
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
#### Run Inference
|
| 128 |
+
|
| 129 |
+
Our model is supported by SGLang now. You can launch the sever with the command in the following:
|
| 130 |
+
|
| 131 |
+
- Start server:
|
| 132 |
+
```shell
|
| 133 |
+
python -m sglang.launch_server \
|
| 134 |
+
--model-path <model_path> \
|
| 135 |
+
--trust-remote-code \
|
| 136 |
+
--tp-size 4 \
|
| 137 |
+
--disable-radix-cache \
|
| 138 |
+
--chunked-prefill-size 0 \
|
| 139 |
+
--attention-backend moba
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
- Client:
|
| 143 |
+
|
| 144 |
+
```shell
|
| 145 |
+
curl -s http://localhost:${PORT}/v1/chat/completions \
|
| 146 |
+
-H "Content-Type: application/json" \
|
| 147 |
+
-d '{"model": "auto", "temperature": 0.6, "messages": [{"role": "user", "content": "Give me a short introduction to large language models."}]}'
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
More usage can be found [here](https://docs.sglang.ai/basic_usage/send_request.html)
|
config.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BailingMoeV2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_bailing_moe_v2.BailingMoeV2Config",
|
| 8 |
+
"AutoModel": "modeling_bailing_moe_v2.BailingMoeV2Model",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_bailing_moe_v2.BailingMoeV2ForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"num_hidden_layers": 20,
|
| 12 |
+
"hidden_size": 2048,
|
| 13 |
+
"intermediate_size": 5120,
|
| 14 |
+
"eos_token_id": 156892,
|
| 15 |
+
"pad_token_id": 156892,
|
| 16 |
+
"first_k_dense_replace": 1,
|
| 17 |
+
"hidden_act": "silu",
|
| 18 |
+
"max_position_embeddings": 32768,
|
| 19 |
+
"model_type": "bailing_moe",
|
| 20 |
+
"moe_intermediate_size": 512,
|
| 21 |
+
"norm_topk_prob": true,
|
| 22 |
+
"num_experts_per_tok": 8,
|
| 23 |
+
"num_attention_heads": 16,
|
| 24 |
+
"num_experts": 256,
|
| 25 |
+
"num_key_value_heads": 4,
|
| 26 |
+
"rope_theta": 600000,
|
| 27 |
+
"rope_scaling": null,
|
| 28 |
+
"tie_word_embeddings": false,
|
| 29 |
+
"torch_dtype": "bfloat16",
|
| 30 |
+
"transformers_version": "4.52.3",
|
| 31 |
+
"use_bias": false,
|
| 32 |
+
"use_rmsnorm": true,
|
| 33 |
+
"rms_norm_eps": 1e-06,
|
| 34 |
+
"head_dim": 128,
|
| 35 |
+
"num_shared_experts": 1,
|
| 36 |
+
"use_cache": true,
|
| 37 |
+
"use_qkv_bias": false,
|
| 38 |
+
"embedding_dropout": 0.0,
|
| 39 |
+
"output_dropout": 0.0,
|
| 40 |
+
"vocab_size": 157184,
|
| 41 |
+
"partial_rotary_factor": 0.5,
|
| 42 |
+
"router_dtype": "fp32",
|
| 43 |
+
"moe_router_enable_expert_bias": true,
|
| 44 |
+
"routed_scaling_factor": 2.5,
|
| 45 |
+
"n_group": 8,
|
| 46 |
+
"topk_group": 4,
|
| 47 |
+
"use_qk_norm": true,
|
| 48 |
+
"score_function": "sigmoid",
|
| 49 |
+
"moe_shared_expert_intermediate_size": 512,
|
| 50 |
+
"moba_block_size": 1024,
|
| 51 |
+
"moba_topk": 8,
|
| 52 |
+
"use_moba_decode": true,
|
| 53 |
+
"moba_layer_freq": [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
|
| 54 |
+
}
|
configuration_bailing_moe_v2.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Bailing MoE model configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class BailingMoeV2Config(PretrainedConfig):
|
| 7 |
+
model_type = "bailing_moe_v2"
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
vocab_size=30592,
|
| 12 |
+
hidden_size=1024,
|
| 13 |
+
intermediate_size=None,
|
| 14 |
+
num_hidden_layers=24,
|
| 15 |
+
num_attention_heads=16,
|
| 16 |
+
num_key_value_heads=0,
|
| 17 |
+
hidden_act="silu",
|
| 18 |
+
use_qkv_bias=False, # bailing only
|
| 19 |
+
use_bias=True, # bailing only
|
| 20 |
+
rms_norm_eps=1e-05,
|
| 21 |
+
norm_head=False, # bailing only
|
| 22 |
+
tie_word_embeddings=False, # PretrainedConfig key, here change default value.
|
| 23 |
+
embedding_dropout=0.1,
|
| 24 |
+
attention_dropout=0.1,
|
| 25 |
+
output_dropout=0.1,
|
| 26 |
+
initializer_range=0.02,
|
| 27 |
+
max_position_embeddings=16384,
|
| 28 |
+
rope_theta=10000.0,
|
| 29 |
+
use_cache=True,
|
| 30 |
+
use_sliding_window=False,
|
| 31 |
+
sliding_window=4096,
|
| 32 |
+
max_window_layers=28,
|
| 33 |
+
rope_scaling=None,
|
| 34 |
+
pad_token_id=126081,
|
| 35 |
+
num_experts=16,
|
| 36 |
+
num_shared_experts=0,
|
| 37 |
+
num_experts_per_tok=2,
|
| 38 |
+
norm_topk_prob=True,
|
| 39 |
+
moe_intermediate_size=None,
|
| 40 |
+
first_k_dense_replace=0,
|
| 41 |
+
head_dim=None,
|
| 42 |
+
output_router_logits=False,
|
| 43 |
+
**kwargs,
|
| 44 |
+
):
|
| 45 |
+
self.num_hidden_layers = num_hidden_layers
|
| 46 |
+
self.vocab_size = vocab_size
|
| 47 |
+
self.hidden_size = hidden_size
|
| 48 |
+
self.intermediate_size = intermediate_size
|
| 49 |
+
self.num_attention_heads = num_attention_heads
|
| 50 |
+
self.num_key_value_heads = num_key_value_heads
|
| 51 |
+
self.hidden_act = hidden_act
|
| 52 |
+
self.use_qkv_bias = use_qkv_bias
|
| 53 |
+
self.use_bias = use_bias
|
| 54 |
+
self.norm_head = norm_head
|
| 55 |
+
self.rms_norm_eps = rms_norm_eps
|
| 56 |
+
self.embedding_dropout = embedding_dropout
|
| 57 |
+
self.attention_dropout = attention_dropout
|
| 58 |
+
self.output_dropout = output_dropout
|
| 59 |
+
self.initializer_range = initializer_range
|
| 60 |
+
self.max_position_embeddings = max_position_embeddings
|
| 61 |
+
self.rope_theta = rope_theta
|
| 62 |
+
self.use_cache = use_cache
|
| 63 |
+
self.use_sliding_window = use_sliding_window
|
| 64 |
+
self.sliding_window = sliding_window
|
| 65 |
+
self.max_window_layers = max_window_layers
|
| 66 |
+
self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
|
| 67 |
+
self.rope_scaling = rope_scaling
|
| 68 |
+
|
| 69 |
+
# MoE configs
|
| 70 |
+
self.num_experts = num_experts
|
| 71 |
+
self.num_shared_experts = num_shared_experts
|
| 72 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 73 |
+
self.norm_topk_prob = norm_topk_prob
|
| 74 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 75 |
+
self.first_k_dense_replace = first_k_dense_replace
|
| 76 |
+
self.output_router_logits = output_router_logits
|
| 77 |
+
|
| 78 |
+
super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 156891,
|
| 3 |
+
"eos_token_id": [
|
| 4 |
+
156892,
|
| 5 |
+
156895
|
| 6 |
+
],
|
| 7 |
+
"pad_token_id": 156892,
|
| 8 |
+
"transformers_version": "4.56.1"
|
| 9 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efab52319e26654aba6a683fe3c5f7526ac5405fa64f42b68eca7695b599984f
|
| 3 |
+
size 8951195664
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aef03dc0f0606de5a240c3e993234461774a18a272bf2a072c7929e6ba8643f8
|
| 3 |
+
size 9834183392
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cc079480e86885dacb049a7069151f69d28e23034860827adc02acd66be419a
|
| 3 |
+
size 9834186472
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46bb29007589c392f841974b70298b5f6e6ce787c1bde7b24e5cdf63620714b8
|
| 3 |
+
size 3893569552
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_bailing_moe_v2.py
ADDED
|
@@ -0,0 +1,1597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python
|
| 2 |
+
#****************************************************************#
|
| 3 |
+
# ScriptName: modeling_bailing_moe_v2.py
|
| 4 |
+
# Author: $SHTERM_REAL_USER@alibaba-inc.com
|
| 5 |
+
# Create Date: 2025-08-12 20:22
|
| 6 |
+
# Modify Author: $SHTERM_REAL_USER@alibaba-inc.com
|
| 7 |
+
# Modify Date: 2025-08-12 20:22
|
| 8 |
+
# Function:
|
| 9 |
+
#***************************************************************#
|
| 10 |
+
# coding=utf-8
|
| 11 |
+
# Copyright 2023 Antgroup and The HuggingFace Inc. team. All rights reserved.
|
| 12 |
+
#
|
| 13 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 14 |
+
# and OPT implementations in this library. It has been modified from its
|
| 15 |
+
# original forms to accommodate minor architectural differences compared
|
| 16 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 17 |
+
#
|
| 18 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 19 |
+
# you may not use this file except in compliance with the License.
|
| 20 |
+
# You may obtain a copy of the License at
|
| 21 |
+
#
|
| 22 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 23 |
+
#
|
| 24 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 25 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 26 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 27 |
+
# See the License for the specific language governing permissions and
|
| 28 |
+
# limitations under the License.
|
| 29 |
+
"""PyTorch BailingMoE model."""
|
| 30 |
+
import math
|
| 31 |
+
import warnings
|
| 32 |
+
from typing import List, Optional, Tuple, Union
|
| 33 |
+
|
| 34 |
+
import torch
|
| 35 |
+
import torch.nn.functional as F
|
| 36 |
+
import torch.utils.checkpoint
|
| 37 |
+
from torch import nn
|
| 38 |
+
from torch.nn import CrossEntropyLoss
|
| 39 |
+
|
| 40 |
+
from transformers.activations import ACT2FN
|
| 41 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 42 |
+
from transformers.modeling_attn_mask_utils import (
|
| 43 |
+
AttentionMaskConverter,
|
| 44 |
+
_prepare_4d_attention_mask,
|
| 45 |
+
_prepare_4d_causal_attention_mask,
|
| 46 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 47 |
+
)
|
| 48 |
+
from transformers.modeling_outputs import (
|
| 49 |
+
MoeModelOutputWithPast,
|
| 50 |
+
MoeCausalLMOutputWithPast,
|
| 51 |
+
)
|
| 52 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 53 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
| 54 |
+
from transformers.utils import (
|
| 55 |
+
add_start_docstrings,
|
| 56 |
+
add_start_docstrings_to_model_forward,
|
| 57 |
+
is_flash_attn_2_available,
|
| 58 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 59 |
+
logging,
|
| 60 |
+
replace_return_docstrings,
|
| 61 |
+
)
|
| 62 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
| 63 |
+
from .configuration_bailing_moe_v2 import BailingMoeV2Config
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
if is_flash_attn_2_available():
|
| 67 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 68 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
| 72 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
| 73 |
+
if is_torch_fx_available():
|
| 74 |
+
if not is_torch_greater_or_equal_than_1_13:
|
| 75 |
+
import torch.fx
|
| 76 |
+
|
| 77 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
logger = logging.get_logger(__name__)
|
| 81 |
+
|
| 82 |
+
_CONFIG_FOR_DOC = "BailingMoeV2Config"
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def _get_unpad_data(attention_mask):
|
| 86 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 87 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 88 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 89 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 90 |
+
return (
|
| 91 |
+
indices,
|
| 92 |
+
cu_seqlens,
|
| 93 |
+
max_seqlen_in_batch,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 98 |
+
warnings.warn(
|
| 99 |
+
"Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
|
| 100 |
+
)
|
| 101 |
+
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def _make_causal_mask(
|
| 105 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 106 |
+
):
|
| 107 |
+
warnings.warn(
|
| 108 |
+
"Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoeV2.modeling_BailingMoeV2.AttentionMaskConverter._make_causal_mask"
|
| 109 |
+
)
|
| 110 |
+
return AttentionMaskConverter._make_causal_mask(
|
| 111 |
+
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class BailingMoeV2RMSNorm(nn.Module):
|
| 116 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 117 |
+
"""
|
| 118 |
+
BailingMoeV2RMSNorm is equivalent to T5LayerNorm
|
| 119 |
+
"""
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 122 |
+
self.variance_epsilon = eps
|
| 123 |
+
|
| 124 |
+
def forward(self, hidden_states):
|
| 125 |
+
input_dtype = hidden_states.dtype
|
| 126 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 127 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 128 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 129 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
ALL_LAYERNORM_LAYERS.append(BailingMoeV2RMSNorm)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class BailingMoeV2RotaryEmbedding(nn.Module):
|
| 136 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 137 |
+
super().__init__()
|
| 138 |
+
|
| 139 |
+
self.dim = dim
|
| 140 |
+
self.max_position_embeddings = max_position_embeddings
|
| 141 |
+
self.base = base
|
| 142 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 143 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 144 |
+
|
| 145 |
+
# Build here to make `torch.jit.trace` work.
|
| 146 |
+
self._set_cos_sin_cache(
|
| 147 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 148 |
+
)
|
| 149 |
+
self.max_seq_len_cached = None
|
| 150 |
+
|
| 151 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 152 |
+
self.max_seq_len_cached = seq_len
|
| 153 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 154 |
+
|
| 155 |
+
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
| 156 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 157 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 158 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 159 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 160 |
+
|
| 161 |
+
def forward(self, x, seq_len=None):
|
| 162 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 163 |
+
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
|
| 164 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 165 |
+
|
| 166 |
+
return (
|
| 167 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 168 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->BailingMoeV2
|
| 173 |
+
class BailingMoeV2LinearScalingRotaryEmbedding(BailingMoeV2RotaryEmbedding):
|
| 174 |
+
"""BailingMoeV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 175 |
+
|
| 176 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 177 |
+
self.scaling_factor = scaling_factor
|
| 178 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 179 |
+
|
| 180 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 181 |
+
self.max_seq_len_cached = seq_len
|
| 182 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 183 |
+
t = t / self.scaling_factor
|
| 184 |
+
|
| 185 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 186 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 187 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 188 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 189 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->BailingMoeV2
|
| 193 |
+
class BailingMoeV2DynamicNTKScalingRotaryEmbedding(BailingMoeV2RotaryEmbedding):
|
| 194 |
+
"""BailingMoeV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 195 |
+
|
| 196 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 197 |
+
self.scaling_factor = scaling_factor
|
| 198 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 199 |
+
|
| 200 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 201 |
+
self.max_seq_len_cached = seq_len
|
| 202 |
+
|
| 203 |
+
if seq_len > self.max_position_embeddings:
|
| 204 |
+
base = self.base * (
|
| 205 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 206 |
+
) ** (self.dim / (self.dim - 2))
|
| 207 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 208 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 209 |
+
|
| 210 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 211 |
+
|
| 212 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 213 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 214 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 215 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 216 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
# Inverse dim formula to find dim based on number of rotations
|
| 220 |
+
def yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
| 221 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
# Find dim range bounds based on rotations
|
| 225 |
+
def yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
| 226 |
+
low = math.floor(yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
| 227 |
+
high = math.ceil(yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings))
|
| 228 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def yarn_get_mscale(scale=1, mscale=1):
|
| 232 |
+
if scale <= 1:
|
| 233 |
+
return 1.0
|
| 234 |
+
return 0.1 * mscale * math.log(scale) + 1.0
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def yarn_linear_ramp_mask(min, max, dim):
|
| 238 |
+
if min == max:
|
| 239 |
+
max += 0.001 # Prevent singularity
|
| 240 |
+
|
| 241 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
| 242 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
| 243 |
+
return ramp_func
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class BailingMoeV2YarnRotaryEmbedding(BailingMoeV2RotaryEmbedding):
|
| 247 |
+
|
| 248 |
+
def __init__(
|
| 249 |
+
self,
|
| 250 |
+
dim,
|
| 251 |
+
max_position_embeddings=2048,
|
| 252 |
+
base=10000,
|
| 253 |
+
device=None,
|
| 254 |
+
scaling_factor=1.0,
|
| 255 |
+
original_max_position_embeddings=4096,
|
| 256 |
+
beta_fast=32,
|
| 257 |
+
beta_slow=1,
|
| 258 |
+
mscale=1,
|
| 259 |
+
mscale_all_dim=0,
|
| 260 |
+
):
|
| 261 |
+
self.scaling_factor = scaling_factor
|
| 262 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 263 |
+
self.beta_fast = beta_fast
|
| 264 |
+
self.beta_slow = beta_slow
|
| 265 |
+
self.mscale = mscale
|
| 266 |
+
self.mscale_all_dim = mscale_all_dim
|
| 267 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 268 |
+
|
| 269 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 270 |
+
self.max_seq_len_cached = seq_len
|
| 271 |
+
dim = self.dim
|
| 272 |
+
|
| 273 |
+
freq_extra = 1.0 / (self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
|
| 274 |
+
freq_inter = 1.0 / (
|
| 275 |
+
self.scaling_factor * self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
low, high = yarn_find_correction_range(
|
| 279 |
+
self.beta_fast,
|
| 280 |
+
self.beta_slow,
|
| 281 |
+
dim,
|
| 282 |
+
self.base,
|
| 283 |
+
self.original_max_position_embeddings,
|
| 284 |
+
)
|
| 285 |
+
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(device=device, dtype=torch.float32)
|
| 286 |
+
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
| 287 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 288 |
+
|
| 289 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
| 290 |
+
|
| 291 |
+
freqs = torch.outer(t, inv_freq)
|
| 292 |
+
|
| 293 |
+
_mscale = float(
|
| 294 |
+
yarn_get_mscale(self.scaling_factor, self.mscale)
|
| 295 |
+
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 299 |
+
self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False)
|
| 300 |
+
self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 304 |
+
def rotate_half(x):
|
| 305 |
+
"""Rotates half the hidden dims of the input."""
|
| 306 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 307 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 308 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 312 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
| 313 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
q (`torch.Tensor`): The query tensor.
|
| 317 |
+
k (`torch.Tensor`): The key tensor.
|
| 318 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 319 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 320 |
+
position_ids (`torch.Tensor`):
|
| 321 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
| 322 |
+
used to pass offsetted position ids when working with a KV-cache.
|
| 323 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 324 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 325 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 326 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 327 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 328 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 329 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 330 |
+
Returns:
|
| 331 |
+
`tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
|
| 332 |
+
"""
|
| 333 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 334 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 335 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 336 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 337 |
+
return q_embed, k_embed
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
class BailingMoeV2MLP(nn.Module):
|
| 341 |
+
def __init__(self, config: BailingMoeV2Config, intermediate_size: int):
|
| 342 |
+
super().__init__()
|
| 343 |
+
self.config = config
|
| 344 |
+
self.hidden_size = config.hidden_size
|
| 345 |
+
self.intermediate_size = intermediate_size
|
| 346 |
+
|
| 347 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 348 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 349 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 350 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 351 |
+
|
| 352 |
+
def forward(self, x):
|
| 353 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class BailingMoeV2Gate(nn.Module):
|
| 357 |
+
def __init__(self, config):
|
| 358 |
+
super().__init__()
|
| 359 |
+
self.config = config
|
| 360 |
+
self.top_k = config.num_experts_per_tok
|
| 361 |
+
self.num_experts = config.num_experts
|
| 362 |
+
|
| 363 |
+
# topk selection algorithm
|
| 364 |
+
self.norm_topk_prob = config.norm_topk_prob
|
| 365 |
+
self.gating_dim = config.hidden_size
|
| 366 |
+
self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
|
| 367 |
+
self.moe_router_topk_scaling_factor = config.moe_router_topk_scaling_factor
|
| 368 |
+
|
| 369 |
+
if self.config.use_expert_bias:
|
| 370 |
+
self.register_buffer("expert_bias", torch.zeros((self.num_experts)))
|
| 371 |
+
self.reset_parameters()
|
| 372 |
+
|
| 373 |
+
def reset_parameters(self) -> None:
|
| 374 |
+
import torch.nn.init as init
|
| 375 |
+
|
| 376 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 377 |
+
|
| 378 |
+
def forward(self, hidden_states):
|
| 379 |
+
# compute gating score
|
| 380 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 381 |
+
logits = F.linear(hidden_states, self.weight, None)
|
| 382 |
+
|
| 383 |
+
if self.config.gate_score_function == 'softmax':
|
| 384 |
+
scores = logits.softmax(dim=-1, dtype=torch.float32)
|
| 385 |
+
|
| 386 |
+
# select top-k experts
|
| 387 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1)
|
| 388 |
+
|
| 389 |
+
# norm gate to sum 1
|
| 390 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
| 391 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True)
|
| 392 |
+
topk_weight = topk_weight / denominator
|
| 393 |
+
topk_weight = topk_weight * self.moe_router_topk_scaling_factor
|
| 394 |
+
|
| 395 |
+
return topk_idx, topk_weight, logits
|
| 396 |
+
elif self.config.gate_score_function == 'sigmoid':
|
| 397 |
+
scores = torch.sigmoid(logits)
|
| 398 |
+
|
| 399 |
+
if self.config.use_expert_bias:
|
| 400 |
+
scores_for_routing = scores + self.expert_bias
|
| 401 |
+
_, topk_idx = torch.topk(scores_for_routing, k=self.top_k, dim=-1)
|
| 402 |
+
scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
|
| 403 |
+
else:
|
| 404 |
+
scores, topk_idx = torch.topk(scores, k=self.top_k, dim=-1)
|
| 405 |
+
topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores
|
| 406 |
+
topk_weight = topk_weight * self.moe_router_topk_scaling_factor
|
| 407 |
+
|
| 408 |
+
return topk_idx, topk_weight, logits
|
| 409 |
+
else:
|
| 410 |
+
raise ValueError(f"Unsupported gate_score_function: {self.config.gate_score_function}")
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
class BailingMoeV2SparseMoeBlock(nn.Module):
|
| 414 |
+
"""
|
| 415 |
+
A mixed expert module containing shared experts.
|
| 416 |
+
"""
|
| 417 |
+
|
| 418 |
+
def __init__(self, config: BailingMoeV2Config):
|
| 419 |
+
super().__init__()
|
| 420 |
+
self.config = config
|
| 421 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 422 |
+
self._setup_experts()
|
| 423 |
+
self.gate = BailingMoeV2Gate(config)
|
| 424 |
+
if config.num_shared_experts is not None:
|
| 425 |
+
self.shared_experts = BailingMoeV2MLP(
|
| 426 |
+
config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
def _setup_experts(self):
|
| 430 |
+
self.experts = nn.ModuleList(
|
| 431 |
+
[
|
| 432 |
+
BailingMoeV2MLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
|
| 433 |
+
for _ in range(self.config.num_experts)
|
| 434 |
+
]
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
def forward(self, hidden_states):
|
| 438 |
+
identity = hidden_states
|
| 439 |
+
bsz, seq_len, h = hidden_states.shape
|
| 440 |
+
topk_idx, topk_weight, router_logits = self.gate(hidden_states)
|
| 441 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 442 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 443 |
+
if self.training:
|
| 444 |
+
hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
|
| 445 |
+
y = torch.empty_like(hidden_states)
|
| 446 |
+
for i, expert in enumerate(self.experts):
|
| 447 |
+
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
| 448 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
| 449 |
+
y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
|
| 450 |
+
else:
|
| 451 |
+
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
|
| 452 |
+
if self.config.num_shared_experts is not None:
|
| 453 |
+
y = y + self.shared_experts(identity)
|
| 454 |
+
return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
|
| 455 |
+
|
| 456 |
+
@torch.no_grad()
|
| 457 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
| 458 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
| 459 |
+
cnts.scatter_(1, topk_ids, 1)
|
| 460 |
+
tokens_per_expert = cnts.sum(dim=0)
|
| 461 |
+
idxs = topk_ids.view(-1).argsort()
|
| 462 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
| 463 |
+
sorted_tokens_shape = sorted_tokens.shape
|
| 464 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
| 465 |
+
outputs = []
|
| 466 |
+
start_idx = 0
|
| 467 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
| 468 |
+
end_idx = start_idx + num_tokens
|
| 469 |
+
if num_tokens == 0:
|
| 470 |
+
continue
|
| 471 |
+
expert = self.experts[i]
|
| 472 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
| 473 |
+
expert_out = expert(tokens_for_this_expert)
|
| 474 |
+
outputs.append(expert_out)
|
| 475 |
+
start_idx = end_idx
|
| 476 |
+
|
| 477 |
+
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
| 478 |
+
new_x = torch.empty_like(outs)
|
| 479 |
+
new_x[idxs] = outs
|
| 480 |
+
final_out = (
|
| 481 |
+
new_x.view(*topk_ids.shape, -1)
|
| 482 |
+
.type(topk_weight.dtype)
|
| 483 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
| 484 |
+
.sum(dim=1)
|
| 485 |
+
.type(new_x.dtype)
|
| 486 |
+
)
|
| 487 |
+
return final_out
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 491 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 492 |
+
"""
|
| 493 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 494 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 495 |
+
"""
|
| 496 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 497 |
+
if n_rep == 1:
|
| 498 |
+
return hidden_states
|
| 499 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 500 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->BailingMoeV2
|
| 504 |
+
class BailingMoeV2Attention(nn.Module):
|
| 505 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 506 |
+
|
| 507 |
+
def __init__(self, config: BailingMoeV2Config, layer_idx: Optional[int] = None):
|
| 508 |
+
super().__init__()
|
| 509 |
+
self.config = config
|
| 510 |
+
self.layer_idx = layer_idx
|
| 511 |
+
if layer_idx is None:
|
| 512 |
+
logger.warning_once(
|
| 513 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 514 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 515 |
+
"when creating this class."
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
self.attention_dropout = config.attention_dropout
|
| 519 |
+
self.hidden_size = config.hidden_size
|
| 520 |
+
self.num_heads = config.num_attention_heads
|
| 521 |
+
self.head_dim = config.head_dim or self.hidden_size // self.num_heads
|
| 522 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 523 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 524 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 525 |
+
self.rope_theta = config.rope_theta
|
| 526 |
+
self.is_causal = True
|
| 527 |
+
|
| 528 |
+
self.query_key_value = nn.Linear(
|
| 529 |
+
self.hidden_size,
|
| 530 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 531 |
+
bias=config.use_qkv_bias,
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
if self.config.use_qk_norm:
|
| 535 |
+
self.q_norm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 536 |
+
self.k_norm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 537 |
+
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
|
| 538 |
+
self._init_rope()
|
| 539 |
+
|
| 540 |
+
def _init_rope(self):
|
| 541 |
+
if self.config.rope_scaling is None:
|
| 542 |
+
self.rotary_emb = BailingMoeV2RotaryEmbedding(
|
| 543 |
+
self.head_dim,
|
| 544 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 545 |
+
base=self.rope_theta,
|
| 546 |
+
)
|
| 547 |
+
else:
|
| 548 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 549 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 550 |
+
if scaling_type == "linear":
|
| 551 |
+
self.rotary_emb = BailingMoeV2LinearScalingRotaryEmbedding(
|
| 552 |
+
self.head_dim,
|
| 553 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 554 |
+
scaling_factor=scaling_factor,
|
| 555 |
+
base=self.rope_theta,
|
| 556 |
+
)
|
| 557 |
+
elif scaling_type == "dynamic":
|
| 558 |
+
self.rotary_emb = BailingMoeV2DynamicNTKScalingRotaryEmbedding(
|
| 559 |
+
self.head_dim,
|
| 560 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 561 |
+
scaling_factor=scaling_factor,
|
| 562 |
+
base=self.rope_theta,
|
| 563 |
+
)
|
| 564 |
+
elif scaling_type == "yarn":
|
| 565 |
+
kwargs = {
|
| 566 |
+
key: self.config.rope_scaling[key]
|
| 567 |
+
for key in [
|
| 568 |
+
"original_max_position_embeddings",
|
| 569 |
+
"beta_fast",
|
| 570 |
+
"beta_slow",
|
| 571 |
+
"mscale",
|
| 572 |
+
"mscale_all_dim",
|
| 573 |
+
]
|
| 574 |
+
if key in self.config.rope_scaling
|
| 575 |
+
}
|
| 576 |
+
self.rotary_emb = BailingMoeV2YarnRotaryEmbedding(
|
| 577 |
+
self.head_dim,
|
| 578 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 579 |
+
scaling_factor=scaling_factor,
|
| 580 |
+
base=self.rope_theta,
|
| 581 |
+
**kwargs,
|
| 582 |
+
)
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 585 |
+
|
| 586 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 587 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 588 |
+
|
| 589 |
+
def forward(
|
| 590 |
+
self,
|
| 591 |
+
hidden_states: torch.Tensor,
|
| 592 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 593 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 594 |
+
past_key_value: Optional[Cache] = None,
|
| 595 |
+
output_attentions: bool = False,
|
| 596 |
+
use_cache: bool = False,
|
| 597 |
+
**kwargs,
|
| 598 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 599 |
+
if "padding_mask" in kwargs:
|
| 600 |
+
warnings.warn(
|
| 601 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
bsz, q_len, _ = hidden_states.size()
|
| 605 |
+
|
| 606 |
+
qkv = self.query_key_value(hidden_states)
|
| 607 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 608 |
+
|
| 609 |
+
query_states, key_states, value_states = qkv.split(
|
| 610 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 611 |
+
)
|
| 612 |
+
query_states = query_states.transpose(1, 2)
|
| 613 |
+
key_states = key_states.transpose(1, 2)
|
| 614 |
+
value_states = value_states.transpose(1, 2)
|
| 615 |
+
|
| 616 |
+
if self.config.use_qk_norm:
|
| 617 |
+
query_states = self.q_norm(query_states)
|
| 618 |
+
key_states = self.k_norm(key_states)
|
| 619 |
+
|
| 620 |
+
kv_seq_len = key_states.shape[-2]
|
| 621 |
+
if past_key_value is not None:
|
| 622 |
+
if self.layer_idx is None:
|
| 623 |
+
raise ValueError(
|
| 624 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
| 625 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
| 626 |
+
"with a layer index."
|
| 627 |
+
)
|
| 628 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 629 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 630 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 631 |
+
|
| 632 |
+
if past_key_value is not None:
|
| 633 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 634 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 635 |
+
|
| 636 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 637 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 638 |
+
|
| 639 |
+
attn_weights = torch.matmul(query_states / math.sqrt(self.head_dim), key_states.transpose(2, 3))
|
| 640 |
+
|
| 641 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 642 |
+
raise ValueError(
|
| 643 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 644 |
+
f" {attn_weights.size()}"
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
if attention_mask is not None:
|
| 648 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 649 |
+
raise ValueError(
|
| 650 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 651 |
+
)
|
| 652 |
+
attn_weights = attn_weights + attention_mask
|
| 653 |
+
|
| 654 |
+
# upcast attention to fp32
|
| 655 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 656 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 657 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 658 |
+
|
| 659 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 660 |
+
raise ValueError(
|
| 661 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 662 |
+
f" {attn_output.size()}"
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 666 |
+
|
| 667 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 668 |
+
|
| 669 |
+
attn_output = self.dense(attn_output)
|
| 670 |
+
|
| 671 |
+
if not output_attentions:
|
| 672 |
+
attn_weights = None
|
| 673 |
+
|
| 674 |
+
return attn_output, attn_weights, past_key_value
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->BailingMoeV2
|
| 678 |
+
class BailingMoeV2FlashAttention2(BailingMoeV2Attention):
|
| 679 |
+
"""
|
| 680 |
+
BailingMoeV2 flash attention module. This module inherits from `BailingMoeV2Attention` as the weights of the module stays
|
| 681 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 682 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 683 |
+
"""
|
| 684 |
+
|
| 685 |
+
def __init__(self, *args, **kwargs):
|
| 686 |
+
super().__init__(*args, **kwargs)
|
| 687 |
+
|
| 688 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 689 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 690 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 691 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 692 |
+
|
| 693 |
+
def forward(
|
| 694 |
+
self,
|
| 695 |
+
hidden_states: torch.Tensor,
|
| 696 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 697 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 698 |
+
past_key_value: Optional[Cache] = None,
|
| 699 |
+
output_attentions: bool = False,
|
| 700 |
+
use_cache: bool = False,
|
| 701 |
+
**kwargs,
|
| 702 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 703 |
+
# BailingMoeV2FlashAttention2 attention does not support output_attentions
|
| 704 |
+
if "padding_mask" in kwargs:
|
| 705 |
+
warnings.warn(
|
| 706 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# overwrite attention_mask with padding_mask
|
| 710 |
+
attention_mask = kwargs.pop("padding_mask")
|
| 711 |
+
|
| 712 |
+
output_attentions = False
|
| 713 |
+
|
| 714 |
+
bsz, q_len, _ = hidden_states.size()
|
| 715 |
+
|
| 716 |
+
# Flash attention requires the input to have the shape
|
| 717 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 718 |
+
# therefore we just need to keep the original shape
|
| 719 |
+
|
| 720 |
+
qkv = self.query_key_value(hidden_states)
|
| 721 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 722 |
+
|
| 723 |
+
query_states, key_states, value_states = qkv.split(
|
| 724 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 725 |
+
)
|
| 726 |
+
query_states = query_states.transpose(1, 2)
|
| 727 |
+
key_states = key_states.transpose(1, 2)
|
| 728 |
+
value_states = value_states.transpose(1, 2)
|
| 729 |
+
|
| 730 |
+
if self.config.use_qk_norm:
|
| 731 |
+
query_states = self.q_norm(query_states)
|
| 732 |
+
key_states = self.k_norm(key_states)
|
| 733 |
+
|
| 734 |
+
kv_seq_len = key_states.shape[-2]
|
| 735 |
+
if past_key_value is not None:
|
| 736 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 737 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 738 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 739 |
+
|
| 740 |
+
if past_key_value is not None:
|
| 741 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 742 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 743 |
+
|
| 744 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 745 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 746 |
+
query_states = query_states.transpose(1, 2)
|
| 747 |
+
key_states = key_states.transpose(1, 2)
|
| 748 |
+
value_states = value_states.transpose(1, 2)
|
| 749 |
+
|
| 750 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 751 |
+
|
| 752 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 753 |
+
# therefore the input hidden states gets silently cast in float32. Hence, we need
|
| 754 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 755 |
+
# This might slow down training & inference so it is recommended to not cast the LayerNorms
|
| 756 |
+
# in fp32. (BailingMoeV2RMSNorm handles it correctly)
|
| 757 |
+
|
| 758 |
+
input_dtype = query_states.dtype
|
| 759 |
+
if input_dtype == torch.float32:
|
| 760 |
+
# Handle the case where the model is quantized
|
| 761 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 762 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 763 |
+
elif torch.is_autocast_enabled():
|
| 764 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 765 |
+
else:
|
| 766 |
+
target_dtype = self.q_proj.weight.dtype
|
| 767 |
+
|
| 768 |
+
logger.warning_once(
|
| 769 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 770 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 771 |
+
f" {target_dtype}."
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
query_states = query_states.to(target_dtype)
|
| 775 |
+
key_states = key_states.to(target_dtype)
|
| 776 |
+
value_states = value_states.to(target_dtype)
|
| 777 |
+
|
| 778 |
+
attn_output = self._flash_attention_forward(
|
| 779 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 783 |
+
attn_output = self.dense(attn_output)
|
| 784 |
+
|
| 785 |
+
if not output_attentions:
|
| 786 |
+
attn_weights = None
|
| 787 |
+
|
| 788 |
+
return attn_output, attn_weights, past_key_value
|
| 789 |
+
|
| 790 |
+
def _flash_attention_forward(
|
| 791 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 792 |
+
):
|
| 793 |
+
"""
|
| 794 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 795 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 796 |
+
|
| 797 |
+
Args:
|
| 798 |
+
query_states (`torch.Tensor`):
|
| 799 |
+
Input query states to be passed to Flash Attention API
|
| 800 |
+
key_states (`torch.Tensor`):
|
| 801 |
+
Input key states to be passed to Flash Attention API
|
| 802 |
+
value_states (`torch.Tensor`):
|
| 803 |
+
Input value states to be passed to Flash Attention API
|
| 804 |
+
attention_mask (`torch.Tensor`):
|
| 805 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 806 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 807 |
+
dropout (`int`, *optional*):
|
| 808 |
+
Attention dropout
|
| 809 |
+
softmax_scale (`float`, *optional*):
|
| 810 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 811 |
+
query_length (`int`):
|
| 812 |
+
The length of the query sequence in terms of tokens. This represents the number of tokens in the
|
| 813 |
+
`query_states` tensor along the sequence dimension. It is used to determine the effective sequence
|
| 814 |
+
length for attention computations.
|
| 815 |
+
"""
|
| 816 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 817 |
+
causal = self.is_causal
|
| 818 |
+
else:
|
| 819 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BailingMoeV2FlashAttention2 __init__.
|
| 820 |
+
causal = self.is_causal and query_length != 1
|
| 821 |
+
|
| 822 |
+
# Contains at least one padding token in the sequence
|
| 823 |
+
if attention_mask is not None:
|
| 824 |
+
batch_size = query_states.shape[0]
|
| 825 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 826 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 830 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 831 |
+
|
| 832 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 833 |
+
query_states,
|
| 834 |
+
key_states,
|
| 835 |
+
value_states,
|
| 836 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 837 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 838 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 839 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 840 |
+
dropout_p=dropout,
|
| 841 |
+
softmax_scale=softmax_scale,
|
| 842 |
+
causal=causal,
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 846 |
+
else:
|
| 847 |
+
attn_output = flash_attn_func(
|
| 848 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
return attn_output
|
| 852 |
+
|
| 853 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 854 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 855 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 856 |
+
|
| 857 |
+
key_layer = index_first_axis(
|
| 858 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 859 |
+
)
|
| 860 |
+
value_layer = index_first_axis(
|
| 861 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 862 |
+
)
|
| 863 |
+
if query_length == kv_seq_len:
|
| 864 |
+
query_layer = index_first_axis(
|
| 865 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 866 |
+
)
|
| 867 |
+
cu_seqlens_q = cu_seqlens_k
|
| 868 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 869 |
+
indices_q = indices_k
|
| 870 |
+
elif query_length == 1:
|
| 871 |
+
max_seqlen_in_batch_q = 1
|
| 872 |
+
cu_seqlens_q = torch.arange(
|
| 873 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 874 |
+
) # There is a memcpy here, that is very bad.
|
| 875 |
+
indices_q = cu_seqlens_q[:-1]
|
| 876 |
+
query_layer = query_layer.squeeze(1)
|
| 877 |
+
else:
|
| 878 |
+
# The -q_len: slice assumes left padding.
|
| 879 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 880 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 881 |
+
|
| 882 |
+
return (
|
| 883 |
+
query_layer,
|
| 884 |
+
key_layer,
|
| 885 |
+
value_layer,
|
| 886 |
+
indices_q,
|
| 887 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 888 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
|
| 892 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->BailingMoeV2
|
| 893 |
+
class BailingMoeV2SdpaAttention(BailingMoeV2Attention):
|
| 894 |
+
"""
|
| 895 |
+
BailingMoeV2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 896 |
+
`BailingMoeV2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 897 |
+
SDPA API.
|
| 898 |
+
"""
|
| 899 |
+
|
| 900 |
+
# Adapted from BailingMoeV2Attention.forward
|
| 901 |
+
def forward(
|
| 902 |
+
self,
|
| 903 |
+
hidden_states: torch.Tensor,
|
| 904 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 905 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 906 |
+
past_key_value: Optional[Cache] = None,
|
| 907 |
+
output_attentions: bool = False,
|
| 908 |
+
use_cache: bool = False,
|
| 909 |
+
**kwargs,
|
| 910 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 911 |
+
if output_attentions:
|
| 912 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 913 |
+
logger.warning_once(
|
| 914 |
+
"BailingMoeV2Model is using BailingMoeV2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 915 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 916 |
+
)
|
| 917 |
+
return super().forward(
|
| 918 |
+
hidden_states=hidden_states,
|
| 919 |
+
attention_mask=attention_mask,
|
| 920 |
+
position_ids=position_ids,
|
| 921 |
+
past_key_value=past_key_value,
|
| 922 |
+
output_attentions=output_attentions,
|
| 923 |
+
use_cache=use_cache,
|
| 924 |
+
)
|
| 925 |
+
|
| 926 |
+
bsz, q_len, _ = hidden_states.size()
|
| 927 |
+
|
| 928 |
+
qkv = self.query_key_value(hidden_states)
|
| 929 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 930 |
+
|
| 931 |
+
query_states, key_states, value_states = qkv.split(
|
| 932 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 933 |
+
)
|
| 934 |
+
query_states = query_states.transpose(1, 2)
|
| 935 |
+
key_states = key_states.transpose(1, 2)
|
| 936 |
+
value_states = value_states.transpose(1, 2)
|
| 937 |
+
|
| 938 |
+
if self.config.use_qk_norm:
|
| 939 |
+
query_states = self.q_norm(query_states)
|
| 940 |
+
key_states = self.k_norm(key_states)
|
| 941 |
+
|
| 942 |
+
kv_seq_len = key_states.shape[-2]
|
| 943 |
+
if past_key_value is not None:
|
| 944 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 945 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 946 |
+
|
| 947 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 948 |
+
|
| 949 |
+
if past_key_value is not None:
|
| 950 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 951 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 952 |
+
|
| 953 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 954 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 955 |
+
|
| 956 |
+
if attention_mask is not None:
|
| 957 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 958 |
+
raise ValueError(
|
| 959 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 963 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 964 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 965 |
+
query_states = query_states.contiguous()
|
| 966 |
+
key_states = key_states.contiguous()
|
| 967 |
+
value_states = value_states.contiguous()
|
| 968 |
+
|
| 969 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 970 |
+
query_states,
|
| 971 |
+
key_states,
|
| 972 |
+
value_states,
|
| 973 |
+
attn_mask=attention_mask,
|
| 974 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 975 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 976 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 980 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 981 |
+
|
| 982 |
+
attn_output = self.dense(attn_output)
|
| 983 |
+
|
| 984 |
+
return attn_output, None, past_key_value
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
ATTENTION_CLASSES = {
|
| 988 |
+
"eager": BailingMoeV2Attention,
|
| 989 |
+
"flash_attention_2": BailingMoeV2FlashAttention2,
|
| 990 |
+
"sdpa": BailingMoeV2SdpaAttention,
|
| 991 |
+
}
|
| 992 |
+
|
| 993 |
+
|
| 994 |
+
class BailingMoeV2DecoderLayer(nn.Module):
|
| 995 |
+
def __init__(self, config: BailingMoeV2Config, layer_idx: int):
|
| 996 |
+
super().__init__()
|
| 997 |
+
self.hidden_size = config.hidden_size
|
| 998 |
+
|
| 999 |
+
self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 1000 |
+
|
| 1001 |
+
self.mlp = (
|
| 1002 |
+
BailingMoeV2SparseMoeBlock(config)
|
| 1003 |
+
if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
|
| 1004 |
+
else BailingMoeV2MLP(config=config, intermediate_size=config.intermediate_size)
|
| 1005 |
+
)
|
| 1006 |
+
self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1007 |
+
self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1008 |
+
|
| 1009 |
+
def forward(
|
| 1010 |
+
self,
|
| 1011 |
+
hidden_states: torch.Tensor,
|
| 1012 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1013 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1014 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1015 |
+
output_attentions: Optional[bool] = False,
|
| 1016 |
+
output_router_logits: Optional[bool] = False,
|
| 1017 |
+
use_cache: Optional[bool] = False,
|
| 1018 |
+
**kwargs,
|
| 1019 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1020 |
+
"""
|
| 1021 |
+
Args:
|
| 1022 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1023 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 1024 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 1025 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 1026 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1027 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1028 |
+
config.n_positions - 1]`.
|
| 1029 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
| 1030 |
+
cached past key and value projection states
|
| 1031 |
+
output_attentions (`bool`, *optional*):
|
| 1032 |
+
Whether to return the attentions tensors of all attention layers. See `attentions` under
|
| 1033 |
+
returned tensors for more detail.
|
| 1034 |
+
output_router_logits (`bool`, *optional*):
|
| 1035 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
| 1036 |
+
and should not be returned during inference.
|
| 1037 |
+
use_cache (`bool`, *optional*):
|
| 1038 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1039 |
+
(see `past_key_values`).
|
| 1040 |
+
"""
|
| 1041 |
+
if "padding_mask" in kwargs:
|
| 1042 |
+
warnings.warn(
|
| 1043 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 1044 |
+
)
|
| 1045 |
+
residual = hidden_states
|
| 1046 |
+
|
| 1047 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 1048 |
+
|
| 1049 |
+
# Self Attention
|
| 1050 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 1051 |
+
hidden_states=hidden_states,
|
| 1052 |
+
attention_mask=attention_mask,
|
| 1053 |
+
position_ids=position_ids,
|
| 1054 |
+
past_key_value=past_key_value,
|
| 1055 |
+
output_attentions=output_attentions,
|
| 1056 |
+
use_cache=use_cache,
|
| 1057 |
+
)
|
| 1058 |
+
hidden_states = residual + hidden_states
|
| 1059 |
+
|
| 1060 |
+
# Fully Connected
|
| 1061 |
+
residual = hidden_states
|
| 1062 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 1063 |
+
hidden_states = self.mlp(hidden_states)
|
| 1064 |
+
if isinstance(hidden_states, tuple):
|
| 1065 |
+
hidden_states, router_logits = hidden_states
|
| 1066 |
+
else:
|
| 1067 |
+
router_logits = None
|
| 1068 |
+
hidden_states = residual + hidden_states
|
| 1069 |
+
|
| 1070 |
+
outputs = (hidden_states,)
|
| 1071 |
+
|
| 1072 |
+
if output_attentions:
|
| 1073 |
+
outputs += (self_attn_weights,)
|
| 1074 |
+
|
| 1075 |
+
if use_cache:
|
| 1076 |
+
outputs += (present_key_value,)
|
| 1077 |
+
|
| 1078 |
+
if output_router_logits:
|
| 1079 |
+
outputs += (router_logits,)
|
| 1080 |
+
|
| 1081 |
+
return outputs
|
| 1082 |
+
|
| 1083 |
+
|
| 1084 |
+
BAILINGMOEV2_START_DOCSTRING = r"""
|
| 1085 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1086 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1087 |
+
etc.)
|
| 1088 |
+
|
| 1089 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1090 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1091 |
+
and behavior.
|
| 1092 |
+
|
| 1093 |
+
Parameters:
|
| 1094 |
+
config ([`BailingMoeV2Config`]):
|
| 1095 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1096 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1097 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1098 |
+
"""
|
| 1099 |
+
|
| 1100 |
+
|
| 1101 |
+
@add_start_docstrings(
|
| 1102 |
+
"The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
|
| 1103 |
+
BAILINGMOEV2_START_DOCSTRING,
|
| 1104 |
+
)
|
| 1105 |
+
class BailingMoeV2PreTrainedModel(PreTrainedModel):
|
| 1106 |
+
config_class = BailingMoeV2Config
|
| 1107 |
+
base_model_prefix = "model"
|
| 1108 |
+
supports_gradient_checkpointing = True
|
| 1109 |
+
_no_split_modules = ["BailingMoeV2DecoderLayer"]
|
| 1110 |
+
_skip_keys_device_placement = "past_key_values"
|
| 1111 |
+
_supports_flash_attn_2 = True
|
| 1112 |
+
_supports_sdpa = True
|
| 1113 |
+
_supports_cache_class = True
|
| 1114 |
+
|
| 1115 |
+
def _init_weights(self, module):
|
| 1116 |
+
std = self.config.initializer_range
|
| 1117 |
+
if isinstance(module, nn.Linear):
|
| 1118 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1119 |
+
if module.bias is not None:
|
| 1120 |
+
module.bias.data.zero_()
|
| 1121 |
+
elif isinstance(module, nn.Embedding):
|
| 1122 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1123 |
+
if module.padding_idx is not None:
|
| 1124 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
BAILINGMOEV2_INPUTS_DOCSTRING = r"""
|
| 1128 |
+
Args:
|
| 1129 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1130 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1131 |
+
it.
|
| 1132 |
+
|
| 1133 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1134 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1135 |
+
|
| 1136 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1137 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1138 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1139 |
+
|
| 1140 |
+
- 1 for tokens that are **not masked**,
|
| 1141 |
+
- 0 for tokens that are **masked**.
|
| 1142 |
+
|
| 1143 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1144 |
+
|
| 1145 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1146 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1147 |
+
|
| 1148 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 1149 |
+
`past_key_values`).
|
| 1150 |
+
|
| 1151 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1152 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1153 |
+
information on the default strategy.
|
| 1154 |
+
|
| 1155 |
+
- 1 indicates the head is **not masked**,
|
| 1156 |
+
- 0 indicates the head is **masked**.
|
| 1157 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1158 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1159 |
+
config.n_positions - 1]`.
|
| 1160 |
+
|
| 1161 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1162 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 1163 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1164 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 1165 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 1166 |
+
|
| 1167 |
+
Two formats are allowed:
|
| 1168 |
+
- a [`~cache_utils.Cache`] instance;
|
| 1169 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1170 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 1171 |
+
cache format.
|
| 1172 |
+
|
| 1173 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 1174 |
+
legacy cache format will be returned.
|
| 1175 |
+
|
| 1176 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1177 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1178 |
+
of shape `(batch_size, sequence_length)`.
|
| 1179 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1180 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1181 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1182 |
+
model's internal embedding lookup matrix.
|
| 1183 |
+
use_cache (`bool`, *optional*):
|
| 1184 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1185 |
+
`past_key_values`).
|
| 1186 |
+
output_attentions (`bool`, *optional*):
|
| 1187 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1188 |
+
tensors for more detail.
|
| 1189 |
+
output_hidden_states (`bool`, *optional*):
|
| 1190 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1191 |
+
more detail.
|
| 1192 |
+
return_dict (`bool`, *optional*):
|
| 1193 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1194 |
+
"""
|
| 1195 |
+
|
| 1196 |
+
|
| 1197 |
+
@add_start_docstrings(
|
| 1198 |
+
"The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
|
| 1199 |
+
BAILINGMOEV2_START_DOCSTRING,
|
| 1200 |
+
)
|
| 1201 |
+
class BailingMoeV2Model(BailingMoeV2PreTrainedModel):
|
| 1202 |
+
"""
|
| 1203 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeV2DecoderLayer`]
|
| 1204 |
+
|
| 1205 |
+
Args:
|
| 1206 |
+
config: BailingMoeV2Config
|
| 1207 |
+
"""
|
| 1208 |
+
|
| 1209 |
+
def __init__(self, config: BailingMoeV2Config):
|
| 1210 |
+
super().__init__(config)
|
| 1211 |
+
self.padding_idx = config.pad_token_id
|
| 1212 |
+
self.vocab_size = config.vocab_size
|
| 1213 |
+
|
| 1214 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1215 |
+
self.layers = nn.ModuleList(
|
| 1216 |
+
[BailingMoeV2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1217 |
+
)
|
| 1218 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 1219 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 1220 |
+
self.norm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1221 |
+
|
| 1222 |
+
self.gradient_checkpointing = False
|
| 1223 |
+
# Initialize weights and apply final processing
|
| 1224 |
+
self.post_init()
|
| 1225 |
+
|
| 1226 |
+
def get_input_embeddings(self):
|
| 1227 |
+
return self.word_embeddings
|
| 1228 |
+
|
| 1229 |
+
def set_input_embeddings(self, value):
|
| 1230 |
+
self.word_embeddings = value
|
| 1231 |
+
|
| 1232 |
+
@add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
|
| 1233 |
+
def forward(
|
| 1234 |
+
self,
|
| 1235 |
+
input_ids: torch.LongTensor = None,
|
| 1236 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1237 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1238 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1239 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1240 |
+
use_cache: Optional[bool] = None,
|
| 1241 |
+
output_attentions: Optional[bool] = None,
|
| 1242 |
+
output_hidden_states: Optional[bool] = None,
|
| 1243 |
+
output_router_logits: Optional[bool] = None,
|
| 1244 |
+
return_dict: Optional[bool] = None,
|
| 1245 |
+
**kwargs,
|
| 1246 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
| 1247 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1248 |
+
output_hidden_states = (
|
| 1249 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1250 |
+
)
|
| 1251 |
+
output_router_logits = (
|
| 1252 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1253 |
+
)
|
| 1254 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1255 |
+
|
| 1256 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1257 |
+
|
| 1258 |
+
# retrieve input_ids and inputs_embeds
|
| 1259 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1260 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1261 |
+
elif input_ids is not None:
|
| 1262 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 1263 |
+
elif inputs_embeds is not None:
|
| 1264 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 1265 |
+
else:
|
| 1266 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1267 |
+
|
| 1268 |
+
if self.gradient_checkpointing and self.training:
|
| 1269 |
+
if use_cache:
|
| 1270 |
+
logger.warning_once(
|
| 1271 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
| 1272 |
+
)
|
| 1273 |
+
use_cache = False
|
| 1274 |
+
|
| 1275 |
+
past_key_values_length = 0
|
| 1276 |
+
if use_cache:
|
| 1277 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 1278 |
+
if use_legacy_cache:
|
| 1279 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 1280 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 1281 |
+
|
| 1282 |
+
if position_ids is None:
|
| 1283 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1284 |
+
position_ids = torch.arange(
|
| 1285 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 1286 |
+
)
|
| 1287 |
+
position_ids = position_ids.unsqueeze(0)
|
| 1288 |
+
|
| 1289 |
+
if inputs_embeds is None:
|
| 1290 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 1291 |
+
|
| 1292 |
+
if self._use_flash_attention_2:
|
| 1293 |
+
# 2d mask is passed through the layers
|
| 1294 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 1295 |
+
elif self._use_sdpa and not output_attentions:
|
| 1296 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 1297 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 1298 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 1299 |
+
attention_mask,
|
| 1300 |
+
(batch_size, seq_length),
|
| 1301 |
+
inputs_embeds,
|
| 1302 |
+
past_key_values_length,
|
| 1303 |
+
)
|
| 1304 |
+
else:
|
| 1305 |
+
# 4d mask is passed through the layers
|
| 1306 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 1307 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 1308 |
+
)
|
| 1309 |
+
|
| 1310 |
+
# embed positions
|
| 1311 |
+
hidden_states = inputs_embeds
|
| 1312 |
+
|
| 1313 |
+
# decoder layers
|
| 1314 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1315 |
+
all_self_attns = () if output_attentions else None
|
| 1316 |
+
all_router_logits = () if output_router_logits else None
|
| 1317 |
+
next_decoder_cache = None
|
| 1318 |
+
|
| 1319 |
+
for decoder_layer in self.layers:
|
| 1320 |
+
if output_hidden_states:
|
| 1321 |
+
all_hidden_states += (hidden_states,)
|
| 1322 |
+
|
| 1323 |
+
if self.gradient_checkpointing and self.training:
|
| 1324 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1325 |
+
decoder_layer.__call__,
|
| 1326 |
+
hidden_states,
|
| 1327 |
+
attention_mask,
|
| 1328 |
+
position_ids,
|
| 1329 |
+
past_key_values,
|
| 1330 |
+
output_attentions,
|
| 1331 |
+
output_router_logits,
|
| 1332 |
+
use_cache,
|
| 1333 |
+
)
|
| 1334 |
+
else:
|
| 1335 |
+
layer_outputs = decoder_layer(
|
| 1336 |
+
hidden_states,
|
| 1337 |
+
attention_mask=attention_mask,
|
| 1338 |
+
position_ids=position_ids,
|
| 1339 |
+
past_key_value=past_key_values,
|
| 1340 |
+
output_attentions=output_attentions,
|
| 1341 |
+
output_router_logits=output_router_logits,
|
| 1342 |
+
use_cache=use_cache,
|
| 1343 |
+
)
|
| 1344 |
+
hidden_states = layer_outputs[0]
|
| 1345 |
+
|
| 1346 |
+
if use_cache:
|
| 1347 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1348 |
+
|
| 1349 |
+
if output_attentions:
|
| 1350 |
+
all_self_attns += (layer_outputs[1],)
|
| 1351 |
+
|
| 1352 |
+
if output_router_logits and layer_outputs[-1] is not None:
|
| 1353 |
+
all_router_logits += (layer_outputs[-1],)
|
| 1354 |
+
|
| 1355 |
+
hidden_states = self.norm(hidden_states)
|
| 1356 |
+
|
| 1357 |
+
# add hidden states from the last decoder layer
|
| 1358 |
+
if output_hidden_states:
|
| 1359 |
+
all_hidden_states += (hidden_states,)
|
| 1360 |
+
|
| 1361 |
+
next_cache = None
|
| 1362 |
+
if use_cache:
|
| 1363 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 1364 |
+
if not return_dict:
|
| 1365 |
+
return tuple(
|
| 1366 |
+
v
|
| 1367 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
| 1368 |
+
if v is not None
|
| 1369 |
+
)
|
| 1370 |
+
return MoeModelOutputWithPast(
|
| 1371 |
+
last_hidden_state=hidden_states,
|
| 1372 |
+
past_key_values=next_cache,
|
| 1373 |
+
hidden_states=all_hidden_states,
|
| 1374 |
+
attentions=all_self_attns,
|
| 1375 |
+
router_logits=all_router_logits,
|
| 1376 |
+
)
|
| 1377 |
+
|
| 1378 |
+
|
| 1379 |
+
class BailingMoeV2ForCausalLM(BailingMoeV2PreTrainedModel):
|
| 1380 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1381 |
+
|
| 1382 |
+
def __init__(self, config: BailingMoeV2Config):
|
| 1383 |
+
super().__init__(config)
|
| 1384 |
+
self.model = BailingMoeV2Model(config)
|
| 1385 |
+
self.vocab_size = config.vocab_size
|
| 1386 |
+
self.norm_head = config.norm_head
|
| 1387 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1388 |
+
|
| 1389 |
+
# Initialize weights and apply final processing
|
| 1390 |
+
self.post_init()
|
| 1391 |
+
|
| 1392 |
+
def get_input_embeddings(self):
|
| 1393 |
+
return self.model.word_embeddings
|
| 1394 |
+
|
| 1395 |
+
def set_input_embeddings(self, value):
|
| 1396 |
+
self.model.word_embeddings = value
|
| 1397 |
+
|
| 1398 |
+
def get_output_embeddings(self):
|
| 1399 |
+
return self.lm_head
|
| 1400 |
+
|
| 1401 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1402 |
+
self.lm_head = new_embeddings
|
| 1403 |
+
|
| 1404 |
+
def set_decoder(self, decoder):
|
| 1405 |
+
self.model = decoder
|
| 1406 |
+
|
| 1407 |
+
def get_decoder(self):
|
| 1408 |
+
return self.model
|
| 1409 |
+
|
| 1410 |
+
def compute_logit(self, hidden_states):
|
| 1411 |
+
if self.norm_head:
|
| 1412 |
+
if self.training:
|
| 1413 |
+
norm_weight = (
|
| 1414 |
+
self.lm_head.weight / (torch.norm(self.lm_head.weight, p=2, dim=0, keepdim=True) + 1e-7).detach()
|
| 1415 |
+
)
|
| 1416 |
+
logits = F.linear(hidden_states, norm_weight, None)
|
| 1417 |
+
else:
|
| 1418 |
+
self.lm_head.weight.data = (
|
| 1419 |
+
self.lm_head.weight.data.float()
|
| 1420 |
+
/ (torch.norm(self.lm_head.weight.data.float(), p=2, dim=0, keepdim=True) + 1e-7)
|
| 1421 |
+
).to(hidden_states.dtype)
|
| 1422 |
+
logits = F.linear(hidden_states, self.lm_head.weight.data, None)
|
| 1423 |
+
self.norm_head = False
|
| 1424 |
+
else:
|
| 1425 |
+
logits = self.lm_head(hidden_states)
|
| 1426 |
+
return logits
|
| 1427 |
+
|
| 1428 |
+
@add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
|
| 1429 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1430 |
+
def forward(
|
| 1431 |
+
self,
|
| 1432 |
+
input_ids: torch.LongTensor = None,
|
| 1433 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1434 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1435 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1436 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1437 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1438 |
+
use_cache: Optional[bool] = None,
|
| 1439 |
+
output_attentions: Optional[bool] = None,
|
| 1440 |
+
output_hidden_states: Optional[bool] = None,
|
| 1441 |
+
output_router_logits: Optional[bool] = None,
|
| 1442 |
+
return_dict: Optional[bool] = None,
|
| 1443 |
+
**kwargs,
|
| 1444 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
| 1445 |
+
r"""
|
| 1446 |
+
Args:
|
| 1447 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1448 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1449 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1450 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1451 |
+
|
| 1452 |
+
Returns:
|
| 1453 |
+
|
| 1454 |
+
Example:
|
| 1455 |
+
|
| 1456 |
+
```python
|
| 1457 |
+
>>> from transformers import AutoTokenizer
|
| 1458 |
+
|
| 1459 |
+
>>> model = BailingMoeV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1460 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1461 |
+
|
| 1462 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1463 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1464 |
+
|
| 1465 |
+
>>> # Generate
|
| 1466 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1467 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1468 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1469 |
+
```"""
|
| 1470 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1471 |
+
output_hidden_states = (
|
| 1472 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1473 |
+
)
|
| 1474 |
+
output_router_logits = (
|
| 1475 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1476 |
+
)
|
| 1477 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1478 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1479 |
+
outputs = self.model(
|
| 1480 |
+
input_ids=input_ids,
|
| 1481 |
+
attention_mask=attention_mask,
|
| 1482 |
+
position_ids=position_ids,
|
| 1483 |
+
past_key_values=past_key_values,
|
| 1484 |
+
inputs_embeds=inputs_embeds,
|
| 1485 |
+
use_cache=use_cache,
|
| 1486 |
+
output_attentions=output_attentions,
|
| 1487 |
+
output_hidden_states=output_hidden_states,
|
| 1488 |
+
output_router_logits=output_router_logits,
|
| 1489 |
+
return_dict=return_dict,
|
| 1490 |
+
**kwargs,
|
| 1491 |
+
)
|
| 1492 |
+
|
| 1493 |
+
hidden_states = outputs[0]
|
| 1494 |
+
|
| 1495 |
+
logits = self.compute_logit(hidden_states=hidden_states)
|
| 1496 |
+
logits = logits.float()
|
| 1497 |
+
|
| 1498 |
+
loss = None
|
| 1499 |
+
aux_loss = None
|
| 1500 |
+
|
| 1501 |
+
if labels is not None:
|
| 1502 |
+
# Shift so that tokens < n predict n
|
| 1503 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1504 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1505 |
+
# Flatten the tokens
|
| 1506 |
+
loss_fct = CrossEntropyLoss()
|
| 1507 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1508 |
+
shift_labels = shift_labels.view(-1)
|
| 1509 |
+
# Enable model parallelism
|
| 1510 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1511 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1512 |
+
|
| 1513 |
+
if not return_dict:
|
| 1514 |
+
output = (logits,) + outputs[1:]
|
| 1515 |
+
if output_router_logits:
|
| 1516 |
+
output = (aux_loss,) + output
|
| 1517 |
+
return (loss,) + output if loss is not None else output
|
| 1518 |
+
|
| 1519 |
+
return MoeCausalLMOutputWithPast(
|
| 1520 |
+
loss=loss,
|
| 1521 |
+
aux_loss=aux_loss,
|
| 1522 |
+
logits=logits,
|
| 1523 |
+
past_key_values=outputs.past_key_values,
|
| 1524 |
+
hidden_states=outputs.hidden_states,
|
| 1525 |
+
attentions=outputs.attentions,
|
| 1526 |
+
router_logits=outputs.router_logits,
|
| 1527 |
+
)
|
| 1528 |
+
|
| 1529 |
+
def prepare_inputs_for_generation(
|
| 1530 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_type_ids=None, **kwargs
|
| 1531 |
+
):
|
| 1532 |
+
if past_key_values is not None:
|
| 1533 |
+
if isinstance(past_key_values, Cache):
|
| 1534 |
+
cache_length = past_key_values.get_seq_length()
|
| 1535 |
+
past_length = past_key_values.seen_tokens
|
| 1536 |
+
max_cache_length = (
|
| 1537 |
+
past_key_values.get_max_length()
|
| 1538 |
+
if hasattr(past_key_values, "get_max_length")
|
| 1539 |
+
else past_key_values.get_max_cache_shape()
|
| 1540 |
+
)
|
| 1541 |
+
else:
|
| 1542 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1543 |
+
max_cache_length = None
|
| 1544 |
+
|
| 1545 |
+
# Keep only the unprocessed tokens:
|
| 1546 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1547 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as input)
|
| 1548 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1549 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1550 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1551 |
+
# input_ids based on the past_length.
|
| 1552 |
+
elif past_length < input_ids.shape[1]:
|
| 1553 |
+
input_ids = input_ids[:, past_length:]
|
| 1554 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1555 |
+
|
| 1556 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1557 |
+
if (
|
| 1558 |
+
max_cache_length is not None
|
| 1559 |
+
and attention_mask is not None
|
| 1560 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1561 |
+
):
|
| 1562 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1563 |
+
|
| 1564 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1565 |
+
if attention_mask is not None and position_ids is None:
|
| 1566 |
+
# create position_ids on the fly for batch generation
|
| 1567 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1568 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1569 |
+
if past_key_values:
|
| 1570 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1571 |
+
|
| 1572 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1573 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1574 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1575 |
+
else:
|
| 1576 |
+
model_inputs = {"input_ids": input_ids}
|
| 1577 |
+
|
| 1578 |
+
model_inputs.update(
|
| 1579 |
+
{
|
| 1580 |
+
"position_ids": position_ids,
|
| 1581 |
+
"past_key_values": past_key_values,
|
| 1582 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1583 |
+
"attention_mask": attention_mask,
|
| 1584 |
+
}
|
| 1585 |
+
)
|
| 1586 |
+
return model_inputs
|
| 1587 |
+
|
| 1588 |
+
@staticmethod
|
| 1589 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1590 |
+
reordered_past = ()
|
| 1591 |
+
for layer_past in past_key_values:
|
| 1592 |
+
reordered_past += (
|
| 1593 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1594 |
+
)
|
| 1595 |
+
return reordered_past
|
| 1596 |
+
|
| 1597 |
+
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|startoftext|>",
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"eos_token": "<|endoftext|>",
|
| 5 |
+
"gmask_token": "[gMASK]",
|
| 6 |
+
"pad_token": "<|endoftext|>"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": "<|startoftext|>",
|
| 5 |
+
"chat_template": "{% for message in messages %}{% set role = message['role'] | lower %}{% if role == 'user' %}{% set role = 'HUMAN' %}{% endif %}{% set role = role | upper %}{{ '<role>' + role + '</role>' + message['content'] }}{% endfor %}{% if add_generation_prompt %}{{ '<role>ASSISTANT</role><think>\n' }}{% endif %}",
|
| 6 |
+
"clean_up_tokenization_spaces": false,
|
| 7 |
+
"cls_token": "[CLS]",
|
| 8 |
+
"eos_token": "<|endoftext|>",
|
| 9 |
+
"fast_tokenizer": true,
|
| 10 |
+
"gmask_token": "[gMASK]",
|
| 11 |
+
"merges_file": null,
|
| 12 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 13 |
+
"pad_token": "<|endoftext|>",
|
| 14 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 15 |
+
"trust_remote_code": true,
|
| 16 |
+
"vocab_file": null
|
| 17 |
+
}
|