from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import json import math import logging import tarfile import tempfile import shutil import torch from torch import nn import torch.nn.functional as F from .file_utils import cached_path from .until_config import PretrainedConfig from .until_module import PreTrainedModel, LayerNorm, ACT2FN from collections import OrderedDict logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = {} CONFIG_NAME = 'cross_config.json' WEIGHTS_NAME = 'cross_pytorch_model.bin' class CrossConfig(PretrainedConfig): """Configuration class to store the configuration of a `CrossModel`. """ pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP config_name = CONFIG_NAME weights_name = WEIGHTS_NAME def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02): """Constructs CrossConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `CrossModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `CrossModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.n_head = n_head def attention(self, x: torch.Tensor, attn_mask: torch.Tensor): attn_mask_ = attn_mask.repeat_interleave(self.n_head, dim=0) return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask_)[0] def forward(self, para_tuple: tuple): # x: torch.Tensor, attn_mask: torch.Tensor # print(para_tuple) x, attn_mask = para_tuple x = x + self.attention(self.ln_1(x), attn_mask) x = x + self.mlp(self.ln_2(x)) return (x, attn_mask) class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads) for _ in range(layers)]) def forward(self, x: torch.Tensor, attn_mask: torch.Tensor): return self.resblocks((x, attn_mask))[0] class CrossEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(CrossEmbeddings, self).__init__() self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, concat_embeddings, concat_type=None): batch_size, seq_length = concat_embeddings.size(0), concat_embeddings.size(1) # if concat_type is None: # concat_type = torch.zeros(batch_size, concat_type).to(concat_embeddings.device) position_ids = torch.arange(seq_length, dtype=torch.long, device=concat_embeddings.device) position_ids = position_ids.unsqueeze(0).expand(concat_embeddings.size(0), -1) # token_type_embeddings = self.token_type_embeddings(concat_type) position_embeddings = self.position_embeddings(position_ids) embeddings = concat_embeddings + position_embeddings # + token_type_embeddings # embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class CrossPooler(nn.Module): def __init__(self, config): super(CrossPooler, self).__init__() self.ln_pool = LayerNorm(config.hidden_size) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = QuickGELU() def forward(self, hidden_states, hidden_mask): # We "pool" the model by simply taking the hidden state corresponding # to the first token. hidden_states = self.ln_pool(hidden_states) pooled_output = hidden_states[:, 0] pooled_output = self.dense(pooled_output) pooled_output = self.activation(pooled_output) return pooled_output class CrossModel(PreTrainedModel): def initialize_parameters(self): proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) def __init__(self, config): super(CrossModel, self).__init__(config) self.embeddings = CrossEmbeddings(config) transformer_width = config.hidden_size transformer_layers = config.num_hidden_layers transformer_heads = config.num_attention_heads self.transformer = Transformer(width=transformer_width, layers=transformer_layers, heads=transformer_heads,) self.pooler = CrossPooler(config) self.apply(self.init_weights) def build_attention_mask(self, attention_mask): extended_attention_mask = attention_mask.unsqueeze(1) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -1000000.0 extended_attention_mask = extended_attention_mask.expand(-1, attention_mask.size(1), -1) return extended_attention_mask def forward(self, concat_input, concat_type=None, attention_mask=None, output_all_encoded_layers=True): if attention_mask is None: attention_mask = torch.ones(concat_input.size(0), concat_input.size(1)) if concat_type is None: concat_type = torch.zeros_like(attention_mask) extended_attention_mask = self.build_attention_mask(attention_mask) embedding_output = self.embeddings(concat_input, concat_type) embedding_output = embedding_output.permute(1, 0, 2) # NLD -> LND embedding_output = self.transformer(embedding_output, extended_attention_mask) embedding_output = embedding_output.permute(1, 0, 2) # LND -> NLD pooled_output = self.pooler(embedding_output, hidden_mask=attention_mask) return embedding_output, pooled_output