kevinkyi commited on
Commit
9477bfa
·
verified ·
1 Parent(s): 66de98a

Add README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -16
README.md CHANGED
@@ -1,4 +1,3 @@
1
-
2
  ---
3
  library_name: autogluon
4
  pipeline_tag: tabular-classification
@@ -13,25 +12,33 @@ language:
13
  - en
14
  ---
15
 
16
-
17
  # Football Elite Classifier — AutoML (AutoGluon Tabular)
18
 
19
- **Task:** Binary classification — predict `Elite` (0/1) from tabular receiver stats.
 
 
20
 
21
  ## Dataset
22
- - **Source:** <classmate name + HF dataset link if public>
23
- - **Split:** Stratified Train/Test = 80/20 on the **original** split.
24
- - **Features:** ['Tgt', 'Rec', 'Yds', 'YBC_per_R', 'YAC_per_R', 'ADOT', 'Drop_pct', 'Rat']
25
- - **Target:** `Elite` (0/1)
26
- - **Preprocessing:** Identifier columns dropped (e.g., Player). Numeric coercion; rows with NA removed.
27
-
28
- ## Training (AutoML)
29
- - **Framework:** AutoGluon Tabular
30
- - **Preset:** `best_quality`
31
- - **Time budget:** 300s
32
- - **Seed:** 42
33
- - **Eval metric:** F1 (binary)
34
- - **Notes:** AutoGluon performs model selection, ensembling, and stacking automatically.
 
 
 
 
 
 
 
35
 
36
  ## Results (Held-out Test)
37
  ```json
@@ -39,6 +46,7 @@ language:
39
  "accuracy": 0.8333333333333334,
40
  "f1": 0.8
41
  }
 
42
 
43
 
44
  ## Limitations & Ethics
 
 
1
  ---
2
  library_name: autogluon
3
  pipeline_tag: tabular-classification
 
12
  - en
13
  ---
14
 
 
15
  # Football Elite Classifier — AutoML (AutoGluon Tabular)
16
 
17
+ ## Purpose
18
+ This model was developed as part of a class assignment on designing and deploying AI/ML systems.
19
+ It demonstrates the use of AutoML (AutoGluon Tabular) to build a binary classifier on football receiver stats.
20
 
21
  ## Dataset
22
+ - **Source:** <classmate name + Hugging Face dataset link if public>
23
+ - **Split:** Stratified Train/Test = 80/20 on the **original** split.
24
+ - **Features:** ['Tgt', 'Rec', 'Yds', 'YBC_per_R', 'YAC_per_R', 'ADOT', 'Drop_pct', 'Rat']
25
+ - **Target:** `Elite` (0/1)
26
+ - **Preprocessing:** Identifier columns dropped (e.g., `Player`). Numeric coercion applied; rows with NA removed.
27
+
28
+ ## Training Setup
29
+ - **Framework:** AutoGluon Tabular
30
+ - **Preset:** `best_quality`
31
+ - **Time budget:** 300 seconds
32
+ - **Seed:** 42
33
+ - **Eval metric:** F1 (binary)
34
+ - **Hardware/Compute:** Colab CPU runtime (2 vCPUs, ~12 GB RAM)
35
+ - **AI Usage Disclosure:** Generative AI tools were used to help structure code and documentation; model training and results are real.
36
+
37
+ ## Hyperparameters / Search Space
38
+ - AutoGluon explored LightGBM, XGBoost, and ensembling variants.
39
+ - Random state set for reproducibility.
40
+ - Auto-stacking and bagging enabled under `best_quality`.
41
+ - Internal hyperparameter tuning handled automatically by AutoGluon.
42
 
43
  ## Results (Held-out Test)
44
  ```json
 
46
  "accuracy": 0.8333333333333334,
47
  "f1": 0.8
48
  }
49
+ ```
50
 
51
 
52
  ## Limitations & Ethics