Add README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
---
|
| 3 |
library_name: autogluon
|
| 4 |
pipeline_tag: tabular-classification
|
|
@@ -13,25 +12,33 @@ language:
|
|
| 13 |
- en
|
| 14 |
---
|
| 15 |
|
| 16 |
-
|
| 17 |
# Football Elite Classifier — AutoML (AutoGluon Tabular)
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
## Dataset
|
| 22 |
-
- **Source:** <classmate name +
|
| 23 |
-
- **Split:** Stratified Train/Test = 80/20 on the **original** split.
|
| 24 |
-
- **Features:** ['Tgt', 'Rec', 'Yds', 'YBC_per_R', 'YAC_per_R', 'ADOT', 'Drop_pct', 'Rat']
|
| 25 |
-
- **Target:** `Elite` (0/1)
|
| 26 |
-
- **Preprocessing:** Identifier columns dropped (e.g., Player). Numeric coercion; rows with NA removed.
|
| 27 |
-
|
| 28 |
-
## Training
|
| 29 |
-
- **Framework:** AutoGluon Tabular
|
| 30 |
-
- **Preset:** `best_quality`
|
| 31 |
-
- **Time budget:**
|
| 32 |
-
- **Seed:** 42
|
| 33 |
-
- **Eval metric:** F1 (binary)
|
| 34 |
-
- **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
## Results (Held-out Test)
|
| 37 |
```json
|
|
@@ -39,6 +46,7 @@ language:
|
|
| 39 |
"accuracy": 0.8333333333333334,
|
| 40 |
"f1": 0.8
|
| 41 |
}
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
## Limitations & Ethics
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: autogluon
|
| 3 |
pipeline_tag: tabular-classification
|
|
|
|
| 12 |
- en
|
| 13 |
---
|
| 14 |
|
|
|
|
| 15 |
# Football Elite Classifier — AutoML (AutoGluon Tabular)
|
| 16 |
|
| 17 |
+
## Purpose
|
| 18 |
+
This model was developed as part of a class assignment on designing and deploying AI/ML systems.
|
| 19 |
+
It demonstrates the use of AutoML (AutoGluon Tabular) to build a binary classifier on football receiver stats.
|
| 20 |
|
| 21 |
## Dataset
|
| 22 |
+
- **Source:** <classmate name + Hugging Face dataset link if public>
|
| 23 |
+
- **Split:** Stratified Train/Test = 80/20 on the **original** split.
|
| 24 |
+
- **Features:** ['Tgt', 'Rec', 'Yds', 'YBC_per_R', 'YAC_per_R', 'ADOT', 'Drop_pct', 'Rat']
|
| 25 |
+
- **Target:** `Elite` (0/1)
|
| 26 |
+
- **Preprocessing:** Identifier columns dropped (e.g., `Player`). Numeric coercion applied; rows with NA removed.
|
| 27 |
+
|
| 28 |
+
## Training Setup
|
| 29 |
+
- **Framework:** AutoGluon Tabular
|
| 30 |
+
- **Preset:** `best_quality`
|
| 31 |
+
- **Time budget:** 300 seconds
|
| 32 |
+
- **Seed:** 42
|
| 33 |
+
- **Eval metric:** F1 (binary)
|
| 34 |
+
- **Hardware/Compute:** Colab CPU runtime (2 vCPUs, ~12 GB RAM)
|
| 35 |
+
- **AI Usage Disclosure:** Generative AI tools were used to help structure code and documentation; model training and results are real.
|
| 36 |
+
|
| 37 |
+
## Hyperparameters / Search Space
|
| 38 |
+
- AutoGluon explored LightGBM, XGBoost, and ensembling variants.
|
| 39 |
+
- Random state set for reproducibility.
|
| 40 |
+
- Auto-stacking and bagging enabled under `best_quality`.
|
| 41 |
+
- Internal hyperparameter tuning handled automatically by AutoGluon.
|
| 42 |
|
| 43 |
## Results (Held-out Test)
|
| 44 |
```json
|
|
|
|
| 46 |
"accuracy": 0.8333333333333334,
|
| 47 |
"f1": 0.8
|
| 48 |
}
|
| 49 |
+
```
|
| 50 |
|
| 51 |
|
| 52 |
## Limitations & Ethics
|