Update modeling_llm2vec4cxr.py with helper methods and vendored pooling
Browse files- modeling_llm2vec4cxr.py +77 -1
modeling_llm2vec4cxr.py
CHANGED
|
@@ -3,9 +3,12 @@ Custom model class for LLM2Vec4CXR that properly handles latent attention poolin
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
from llm2vec.models.bidirectional_llama import LlamaBiModel
|
| 6 |
-
from llm2vec.pooling import LatentAttentionPooling
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
import torch.nn as nn
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class LLM2Vec4CXRModel(LlamaBiModel):
|
|
@@ -49,6 +52,79 @@ class LLM2Vec4CXRModel(LlamaBiModel):
|
|
| 49 |
|
| 50 |
return outputs.last_hidden_state
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Register the model for auto loading
|
| 54 |
from transformers import AutoModel
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
from llm2vec.models.bidirectional_llama import LlamaBiModel
|
| 6 |
+
# from llm2vec.pooling import LatentAttentionPooling
|
| 7 |
+
from .pooling_latent import LatentAttentionPooling
|
| 8 |
+
from transformers import AutoTokenizer
|
| 9 |
import torch
|
| 10 |
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
|
| 13 |
|
| 14 |
class LLM2Vec4CXRModel(LlamaBiModel):
|
|
|
|
| 52 |
|
| 53 |
return outputs.last_hidden_state
|
| 54 |
|
| 55 |
+
# --- Convenience tokenizer (lazy) -------------------------------------
|
| 56 |
+
def _get_tokenizer(self):
|
| 57 |
+
if not hasattr(self, "_hf_tokenizer"):
|
| 58 |
+
tok = AutoTokenizer.from_pretrained(getattr(self.config, "_name_or_path", "lukeingawesome/llm2vec4cxr"))
|
| 59 |
+
if tok.pad_token is None:
|
| 60 |
+
tok.pad_token = tok.eos_token
|
| 61 |
+
tok.padding_side = "left"
|
| 62 |
+
self._hf_tokenizer = tok
|
| 63 |
+
return self._hf_tokenizer
|
| 64 |
+
|
| 65 |
+
# --- Ensure latent_attn follows .to(device/dtype) ----------------------
|
| 66 |
+
def to(self, *args, **kwargs):
|
| 67 |
+
m = super().to(*args, **kwargs)
|
| 68 |
+
if hasattr(self, "latent_attn") and self.latent_attn is not None:
|
| 69 |
+
# Align latent_attn with the base weights' device & dtype
|
| 70 |
+
try:
|
| 71 |
+
device = next(p.device for p in self.parameters() if p is not None)
|
| 72 |
+
dtype = next((p.dtype for p in self.parameters() if p.is_floating_point()), None)
|
| 73 |
+
self.latent_attn = self.latent_attn.to(device=device, dtype=dtype)
|
| 74 |
+
except StopIteration:
|
| 75 |
+
pass
|
| 76 |
+
return m
|
| 77 |
+
|
| 78 |
+
# --- Simple text encoding (no instruction) ----------------------------
|
| 79 |
+
@torch.no_grad()
|
| 80 |
+
def encode_text(self, texts, max_length: int = 512):
|
| 81 |
+
tok = self._get_tokenizer()
|
| 82 |
+
enc = tok(texts, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
| 83 |
+
# For simple encoding we embed over all non‑pad tokens
|
| 84 |
+
enc["embed_mask"] = enc["attention_mask"].clone()
|
| 85 |
+
dev = next(self.parameters()).device
|
| 86 |
+
enc = {k: v.to(dev) for k, v in enc.items()}
|
| 87 |
+
return self(input_ids=enc["input_ids"], attention_mask=enc["attention_mask"], embed_mask=enc["embed_mask"])
|
| 88 |
+
|
| 89 |
+
# --- Instruction/text encoding with separator -------------------------
|
| 90 |
+
def _build_separator_inputs(self, texts, max_length: int, separator: str):
|
| 91 |
+
tok = self._get_tokenizer()
|
| 92 |
+
# Split into [instruction | text]; we embed only the trailing "text" part.
|
| 93 |
+
parts_after_sep = []
|
| 94 |
+
original = []
|
| 95 |
+
for t in texts:
|
| 96 |
+
parts = t.split(separator)
|
| 97 |
+
parts_after_sep.append(parts[1] if len(parts) > 1 else "")
|
| 98 |
+
original.append("".join(parts))
|
| 99 |
+
|
| 100 |
+
tokenized = tok(original, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
| 101 |
+
# Build an embed_mask that lights up only the trailing "text" span
|
| 102 |
+
embed_mask = None
|
| 103 |
+
for i, t in enumerate(parts_after_sep):
|
| 104 |
+
sub = tok([t], return_tensors="pt", padding=True, truncation=True, max_length=max_length, add_special_tokens=False)
|
| 105 |
+
m = torch.zeros_like(tokenized["attention_mask"][i])
|
| 106 |
+
if len(sub["input_ids"][0]) > 0:
|
| 107 |
+
m[-len(sub["input_ids"][0]):] = 1
|
| 108 |
+
embed_mask = m.unsqueeze(0) if embed_mask is None else torch.cat([embed_mask, m.unsqueeze(0)], dim=0)
|
| 109 |
+
|
| 110 |
+
tokenized["embed_mask"] = embed_mask
|
| 111 |
+
return tokenized
|
| 112 |
+
|
| 113 |
+
@torch.no_grad()
|
| 114 |
+
def encode_with_separator(self, texts, separator: str = "!@#$%^&*()", max_length: int = 512):
|
| 115 |
+
enc = self._build_separator_inputs(texts, max_length=max_length, separator=separator)
|
| 116 |
+
dev = next(self.parameters()).device
|
| 117 |
+
enc = {k: v.to(dev) for k, v in enc.items()}
|
| 118 |
+
return self(input_ids=enc["input_ids"], attention_mask=enc["attention_mask"], embed_mask=enc["embed_mask"])
|
| 119 |
+
|
| 120 |
+
# --- One‑liner cosine similarity over instruction+text ----------------
|
| 121 |
+
@torch.no_grad()
|
| 122 |
+
def compute_similarities(self, query_text: str, candidate_texts, separator: str = "!@#$%^&*()", max_length: int = 512):
|
| 123 |
+
all_texts = [query_text] + list(candidate_texts)
|
| 124 |
+
embs = self.encode_with_separator(all_texts, separator=separator, max_length=max_length)
|
| 125 |
+
# embs: [N, 2048]; compare query vs candidates
|
| 126 |
+
return F.cosine_similarity(embs[0], embs[1:], dim=1)
|
| 127 |
+
|
| 128 |
|
| 129 |
# Register the model for auto loading
|
| 130 |
from transformers import AutoModel
|