Upload model
Browse files- README.md +199 -0
- config.json +16 -0
- model.safetensors +3 -0
- modeling_xcodec2.py +165 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "HKUSTAudio/xcodec2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XCodec2Model"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoModel": "modeling_xcodec2.XCodec2Model"
|
| 8 |
+
},
|
| 9 |
+
"codec_decoder_hidden_size": 1024,
|
| 10 |
+
"codec_encoder_hidden_size": 1024,
|
| 11 |
+
"model_type": "xcodec",
|
| 12 |
+
"semantic_hidden_size": 1024,
|
| 13 |
+
"torch_dtype": "float32",
|
| 14 |
+
"transformers_version": "4.44.2",
|
| 15 |
+
"use_vocos": true
|
| 16 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b6b739f220c9e64e525c104afe77002067fe90ba94f4b4110aa6314195b7fcd
|
| 3 |
+
size 3301612648
|
modeling_xcodec2.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
from configuration_bigcodec import BigCodecConfig
|
| 5 |
+
|
| 6 |
+
# 请确保这些模块路径是正确的
|
| 7 |
+
from vq.codec_encoder import CodecEncoder_Transformer
|
| 8 |
+
from vq.codec_decoder_vocos import CodecDecoderVocos
|
| 9 |
+
from vq.module import SemanticEncoder
|
| 10 |
+
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
class XCodec2Model(PreTrainedModel):
|
| 13 |
+
config_class = BigCodecConfig
|
| 14 |
+
|
| 15 |
+
def __init__(self, config: BigCodecConfig):
|
| 16 |
+
super().__init__(config)
|
| 17 |
+
|
| 18 |
+
# 1) 语义模型
|
| 19 |
+
self.semantic_model = Wav2Vec2BertModel.from_pretrained(
|
| 20 |
+
"facebook/w2v-bert-2.0",
|
| 21 |
+
output_hidden_states=True
|
| 22 |
+
)
|
| 23 |
+
self.semantic_model.eval()
|
| 24 |
+
|
| 25 |
+
self.SemanticEncoder_module = SemanticEncoder(
|
| 26 |
+
config.semantic_hidden_size,
|
| 27 |
+
config.semantic_hidden_size,
|
| 28 |
+
config.semantic_hidden_size
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# 2) Codec Encoder
|
| 32 |
+
self.CodecEnc = CodecEncoder_Transformer()
|
| 33 |
+
|
| 34 |
+
# 3) Codec Decoder
|
| 35 |
+
self.generator = CodecDecoderVocos()
|
| 36 |
+
|
| 37 |
+
# 4) 两个全连接层
|
| 38 |
+
self.fc_prior = nn.Linear(2048, 2048)
|
| 39 |
+
self.fc_post_a = nn.Linear(2048, 1024)
|
| 40 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
| 41 |
+
self.feature_extractor = feature_extractor
|
| 42 |
+
self.avg_pooler = nn.AvgPool1d(2, stride=2)
|
| 43 |
+
|
| 44 |
+
def forward(self, input_waveform, input_features=None, sample_rate=16000):
|
| 45 |
+
"""
|
| 46 |
+
这里的 forward 不一定要叫 forward,也可以拆成别的方法;
|
| 47 |
+
但是如果想兼容 pipeline,需要在 forward 里给出核心逻辑。
|
| 48 |
+
|
| 49 |
+
参数:
|
| 50 |
+
input_waveform: [batch_size, waveform_length]
|
| 51 |
+
sample_rate: 默认 16000
|
| 52 |
+
返回:
|
| 53 |
+
重构后的语音音频 (Tensor)
|
| 54 |
+
"""
|
| 55 |
+
# 1) 特征提取
|
| 56 |
+
# 如果需要 padding,可以在这里做
|
| 57 |
+
wav = input_waveform
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
if input_features is None:
|
| 60 |
+
pad_for_wav = (320 - (wav.shape[1] % 320))
|
| 61 |
+
wav = torch.nn.functional.pad(wav, (0, pad_for_wav))
|
| 62 |
+
padded = F.pad(wav, (160, 160, 0, 0))
|
| 63 |
+
input_features = self.feature_extractor(
|
| 64 |
+
padded.cpu().numpy(),
|
| 65 |
+
sampling_rate=sample_rate,
|
| 66 |
+
return_tensors="pt"
|
| 67 |
+
).input_features.to(self.device)
|
| 68 |
+
|
| 69 |
+
# 2) 语义层
|
| 70 |
+
semantic_output = self.semantic_model(input_features)
|
| 71 |
+
semantic_hidden_16 = semantic_output.hidden_states[16] # 取第16层
|
| 72 |
+
semantic_hidden_16 = semantic_hidden_16.transpose(1, 2) # [batch, hidden_dim, frames]
|
| 73 |
+
semantic_encoded = self.SemanticEncoder_module(semantic_hidden_16)
|
| 74 |
+
|
| 75 |
+
# 3) codec encoder
|
| 76 |
+
wav = wav.to(self.device) # shape: [batch, 1, time]
|
| 77 |
+
vq_emb = self.CodecEnc(wav.unsqueeze(1)) # [batch, time//down, 1024] 只是示例
|
| 78 |
+
vq_emb = vq_emb.transpose(1, 2) # -> [batch, 1024, frames]
|
| 79 |
+
|
| 80 |
+
concat_emb = torch.cat([semantic_encoded, vq_emb], dim=1) # [batch, 1024 + 1024, frames]
|
| 81 |
+
|
| 82 |
+
# 5) fc_prior
|
| 83 |
+
concat_emb = self.fc_prior(concat_emb.transpose(1, 2)).transpose(1, 2)
|
| 84 |
+
concat_emb = self.avg_pooler(concat_emb)
|
| 85 |
+
|
| 86 |
+
# 6) decoder 的量化部分
|
| 87 |
+
_, vq_code, _ = self.generator(concat_emb, vq=True)
|
| 88 |
+
vq_post_emb = self.generator.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
|
| 89 |
+
vq_post_emb = vq_post_emb.transpose(1, 2)
|
| 90 |
+
|
| 91 |
+
# 7) fc_post_a
|
| 92 |
+
vq_post_emb = self.fc_post_a(vq_post_emb.transpose(1, 2)).transpose(1, 2)
|
| 93 |
+
|
| 94 |
+
# 8) 最后解码成波形
|
| 95 |
+
recon_audio = self.generator(vq_post_emb.transpose(1, 2), vq=False)[0]
|
| 96 |
+
# recon_audio: [batch, time]
|
| 97 |
+
return recon_audio
|
| 98 |
+
|
| 99 |
+
def encode_code(self, input_waveform, sample_rate=16000):
|
| 100 |
+
"""
|
| 101 |
+
将输入的音频编码为代码表示。
|
| 102 |
+
|
| 103 |
+
参数:
|
| 104 |
+
input_waveform: [batch_size, waveform_length]
|
| 105 |
+
sample_rate: 默认 16000
|
| 106 |
+
返回:
|
| 107 |
+
编码后的代码 (Tensor)
|
| 108 |
+
"""
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
wav = input_waveform
|
| 113 |
+
pad_for_wav = (320 - (wav.shape[1] % 320))
|
| 114 |
+
|
| 115 |
+
wav = torch.nn.functional.pad(wav, (0, pad_for_wav))
|
| 116 |
+
|
| 117 |
+
input_features = self.feature_extractor(
|
| 118 |
+
F.pad(wav[0,:].cpu(), (160, 160)),
|
| 119 |
+
sampling_rate=sample_rate,
|
| 120 |
+
return_tensors="pt"
|
| 121 |
+
).input_features.to(self.device) # [batch, frames, feat_dim]
|
| 122 |
+
|
| 123 |
+
# 2) 语义层
|
| 124 |
+
semantic_output = self.semantic_model(input_features)
|
| 125 |
+
semantic_hidden_16 = semantic_output.hidden_states[16] # 取第16层
|
| 126 |
+
semantic_hidden_16 = semantic_hidden_16.transpose(1, 2) # [batch, hidden_dim, frames]
|
| 127 |
+
semantic_encoded = self.SemanticEncoder_module(semantic_hidden_16)
|
| 128 |
+
|
| 129 |
+
# 3) codec encoder
|
| 130 |
+
wav = wav.to(self.device) # shape: [batch, 1, time]
|
| 131 |
+
vq_emb = self.CodecEnc(wav.unsqueeze(1)) # [batch, time//down, 1024] 只是示例
|
| 132 |
+
vq_emb = vq_emb.transpose(1, 2) # -> [batch, 1024, frames]
|
| 133 |
+
|
| 134 |
+
# 4) 拼接
|
| 135 |
+
concat_emb = torch.cat([semantic_encoded, vq_emb], dim=1) # [batch, 2048, frames]
|
| 136 |
+
|
| 137 |
+
# 5) fc_prior
|
| 138 |
+
concat_emb = self.fc_prior(concat_emb.transpose(1, 2)).transpose(1, 2)
|
| 139 |
+
|
| 140 |
+
# 6) decoder 的量化部分,获取code
|
| 141 |
+
concat_emb = self.avg_pooler(concat_emb)
|
| 142 |
+
_, vq_code, _ = self.generator(concat_emb, vq=True)
|
| 143 |
+
# vq_code: [batch, frames]
|
| 144 |
+
return vq_code
|
| 145 |
+
|
| 146 |
+
def decode_code(self, vq_code):
|
| 147 |
+
"""
|
| 148 |
+
将编码后的代码解码回音频。
|
| 149 |
+
|
| 150 |
+
参数:
|
| 151 |
+
vq_code: 编码后的代码 (Tensor) [batch, frames]
|
| 152 |
+
返回:
|
| 153 |
+
解码后的音频 (Tensor) [batch, waveform_length]
|
| 154 |
+
"""
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
# 获取量化后的嵌入
|
| 157 |
+
vq_post_emb = self.generator.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
|
| 158 |
+
vq_post_emb = vq_post_emb.transpose(1, 2) # [batch, 1024, frames]
|
| 159 |
+
|
| 160 |
+
# 7) fc_post_a
|
| 161 |
+
vq_post_emb = self.fc_post_a(vq_post_emb.transpose(1, 2)).transpose(1, 2) # [batch, 1024, frames]
|
| 162 |
+
|
| 163 |
+
# 8) 最后解码成波形
|
| 164 |
+
recon_audio = self.generator(vq_post_emb.transpose(1, 2), vq=False)[0] # [batch, time]
|
| 165 |
+
return recon_audio
|